RESUMO
OBJECTIVES: Necroptosis is a cell death type mediated by receptor interacting protein 3 (RIP3)/mixed lineage kinase domain-like protein (MLKL). It has been reported that mammalian target of rapamycin plays a regulatory role in necroptosis. Eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)-eukaryotic initiation factor 4E (eIF4E) pathway is a key down streamer of mammalian target of rapamycin. However, whether 4EBP1-eIF4E pathway is involved in necroptosis is still unknown. This study aims to investigate the changes of 4EBP1-eIF4E pathway in necroptosis. METHODS: TNF-α/SM-164/Z-VAD-FMK (TSZ), a necroptosis inducer, was used to induce necroptosis in murine fibroblastoid cell line L929. Cell necrosis was observed under an optical microscope. Then, TSZ was added to L929 cells with RIP3 and MLKL gene knockout. Propidium iodide (PI) staining was used to observe cell necrosis. Real-time fluorescence quantitative PCR and Western blotting were used to determine the mRNA and protein expression of 4EBP1 and eIF4E, respectively. RESULTS: After treating L929 cells with TSZ, the number of necrotic cells was increased, the mRNA and protein expression levels of 4EBP1 were significantly downregulated, and the ratio of phosphorylated 4EBP1 (p-4EBP1) to 4EBP1 was increased (P<0.05 or P<0.01); the mRNA expression level of eIF4E was significantly upregulated, and the ratio of phosphorylated eIF4E (p-eIF4E) to eIF4E was increased (both P<0.01). After knocking out RIP3 and MLKL in L929 cells, PI positive necrotic cells were significantly reduced, the mRNA and protein expression levels of 4EBP1 were significantly upregulated, and the ratio of p-4EBP1 to 4EBP1 was decreased (P<0.05 or P<0.01); the mRNA expression level of eIF4E was significantly downregulated, and the ratio of p-eIF4E to eIF4E was decreased (both P<0.01). CONCLUSIONS: 4EBP1-eIF4E pathway is activated in the RIP3/MLKL mediated-necroptosis.
Assuntos
Fator de Iniciação 4E em Eucariotos , Necroptose , Proteínas Quinases , Animais , Camundongos , Linhagem Celular , Fluorescência , Serina-Treonina Quinases TOR , Proteína Serina-Treonina Quinases de Interação com ReceptoresRESUMO
BACKGROUND: Breast cancer (BC) remains a public health problem. Tamoxifen (TAM) resistance has caused great difficulties for treatment of BC patients. Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) plays critical roles in the tumorigenesis and progression of BC. However, the expression and mechanism of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients are still unclear. AIM: To investigate the expression and functions of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients. METHODS: High-throughput sequencing data of breast tumors were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis identified EIF4EBP1 to be significantly upregulated in cancer tissues. Its prognostic value was analyzed. The biological function and related pathways of EIF4EBP1 was analyzed. Subsequently, the expression of EIF4EBP1 was determined by real-time reverse transcription polymerase chain reaction and western blotting. Cell Counting Kit-8 assays, colony formation assay and wound healing assay were used to understand the phenotypes of function of EIF4EBP1. RESULTS: EIF4EBP1 was upregulated in the TAM-resistant cells, and EIF4EBP1 was related to the prognosis of BC patients. Gene Set Enrichment Analysis showed that EIF4EBP1 might be involved in Hedgehog signaling pathways. Decreasing the expression of EIF4EBP1 could reverse TAM resistance, whereas overexpression of EIF4EBP1 promoted TAM resistance. CONCLUSION: This study indicated that EIF4EBP1 was overexpressed in the BC and TAM-resistant cell line, which increased cell proliferation, invasion, migration and TAM resistance in BC cells.
RESUMO
The conserved protein kinase mTOR (mechanistic target of rapamycin) responds to diverse environmental cues to control cell metabolism and promote cell growth, proliferation, and survival as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2. Our prior work demonstrated that an alkaline intracellular pH (pHi) increases mTORC2 activity and cell survival in complete media in part by activating AMP-activated protein kinase, a kinase best known to sense energetic stress. It is important to note that an alkaline pHi represents an underappreciated hallmark of cancer cells that promotes their oncogenic behaviors. In addition, mechanisms that control mTORC1 and mTORC2 signaling and function remain incompletely defined, particularly in response to stress conditions. Here, we demonstrate that an alkaline pHi increases phosphatidylinositide 3-kinase (PI3K) activity to promote mTORC1 and mTORC2 signaling in the absence of serum growth factors. Alkaline pHi increases mTORC1 activity through PI3K-Akt signaling, which mediates inhibitory phosphorylation of the upstream proteins tuberous sclerosis complex 2 and proline-rich Akt substrate of 40 kDa and dissociates tuberous sclerosis complex from lysosomal membranes, thus enabling Rheb-mediated activation of mTORC1. Thus, alkaline pHi mimics growth factor-PI3K signaling. Functionally, we also demonstrate that an alkaline pHi increases cap-dependent protein synthesis through inhibitory phosphorylation of eIF4E binding protein 1 and suppresses apoptosis in a PI3K- and mTOR-dependent manner. We speculate that an alkaline pHi promotes a low basal level of cell metabolism (e.g., protein synthesis) that enables cancer cells within growing tumors to proliferate and survive despite limiting growth factors and nutrients, in part through elevated PI3K-mTORC1 and/or PI3K-mTORC2 signaling.
RESUMO
Dietary supplementation with methionine and threonine spares body protein in rats fed a low protein diet, but the effect is not observed for other essential amino acids. Although the requirement for sulfur amino acids is relatively high in rodents, the precise mechanisms underlying protein retention are not fully understood. The aim of this study was to explore whether the activation of mammalian target of rapamycin complex 1 (mTORC1) downstream factors in skeletal muscle by supplementation with threonine and/or methionine contributes to protein retention under sufficient cystine requirement. Male Sprague-Dawley rats were freely fed a 0% protein diet for 2 weeks. These experimental rats were then fed a restricted diet (14.5 g/day) containing 12% soy protein supplemented with both cystine and, methionine and threonine (MT), methionine (M), threonine (T), or neither (NA) (n = 8) for an additional 12 days. Two additional groups were freely fed a diet containing 0% protein or 20% casein as controls (n = 6). Body weight and gastrocnemius muscle weight were higher, and blood urea nitrogen and urinary nitrogen excretion were lower, in the M and MT groups than in the T and NA groups, respectively. p70 S6 kinase 1 abundance was higher, and eukaryotic translation initiation factor 4E-binding protein 1 abundance and mRNA levels were lower, in the skeletal muscles of the M and MT groups. These results suggest that methionine regulates mTORC1 downstream factors in skeletal muscle, leading to spare body protein in rats fed a low protein diet meeting cystine requirements.
Assuntos
Aminoácidos Sulfúricos , Metionina , Ratos , Masculino , Animais , Metionina/metabolismo , Aminoácidos Sulfúricos/análise , Aminoácidos Sulfúricos/metabolismo , Proteínas de Soja/farmacologia , Projetos Piloto , Cistina , Ratos Sprague-Dawley , Fígado/metabolismo , Dieta , Racemetionina/metabolismo , Suplementos Nutricionais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Treonina/metabolismo , Mamíferos/metabolismoRESUMO
Background and aims: The pathophysiology of sarcopenia in cirrhosis is poorly understood. We aimed to evaluate the histological alterations in the muscle tissue of patients with cirrhosis and sarcopenia, and identify the regulators of muscle homeostasis. Methods: Computed tomography images at third lumbar vertebral level were used to assess skeletal muscle index (SMI) in 180 patients. Sarcopenia was diagnosed based on the SMI cut-offs from a population of similar ethnicity. Muscle biopsy was obtained from the vastus lateralis in 10 sarcopenic patients with cirrhosis, and the external oblique in five controls (voluntary kidney donors during nephrectomy). Histological changes were assessed by hematoxylin and eosin staining and immunohistochemistry for phospho-FOXO3, phospho-AKT, phospho-mTOR, and apoptosis markers (annexin V and caspase 3). The messenger ribonucleic acid (mRNA) expressions for MSTN, FoxO3, markers of ubiquitin-proteasome pathway (FBXO32, TRIM63), and markers of autophagy (Beclin-1 and LC3) were also quantified. Results: The prevalence of sarcopenia was 14.4%. Muscle histology in sarcopenics showed atrophic angulated fibers (P = 0.002) compared to controls. Immunohistochemistry showed a significant loss of expression of phospho-mTOR (P = 0.026) and an unaltered phospho-AKT (P = 0.089) in sarcopenic patients. There were no differences in the immunostaining for annexin-V, caspase-3, and phospho-FoxO3 between the two groups. The mRNA expressions of MSTN and Beclin-1 were higher in sarcopenics (P = 0.04 and P = 0.04, respectively). The two groups did not differ in the mRNA levels for TRIM63, FBXO32, and LC3. Conclusions: Significant muscle atrophy, increase in autophagy, MSTN gene expression, and an impaired mTOR signaling were seen in patients with sarcopenia and cirrhosis.
RESUMO
Breast cancer (BC) is one of the most common types of cancer with the highest morbidity rate amongst all cancers in women worldwide. Arctigenin is isolated from the seeds of Asteraceae lappa and exhibits anti-inflammatory and anti-viral effects. The present study aimed to investigate the effect of arctigenin on BC cells and to explore the regulation of arctigenin on eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) expression. To do so, MDA-MB-231 and BT549 cells were treated with arctigenin at various concentrations (0, 5, 10, 20 and 40 µM). Cells treated with 40 µM arctigenin were transfected with pcDNA3.1-4EBP1 or NC control. Cell Counting Kit-8 assay was used to determine cell proliferation, reverse transcription quantitative PCR was used to evaluate the transfection efficiency, western blotting was used to detect relative protein expression and Transwell assays were performed to evaluate the migratory and invasive abilities of BC cells. The results demonstrated that arctigenin could inhibit the proliferation, migratory and invasive abilities, and epithelial to mesenchymal transition (EMT) of MDA-MB-231 and BT549 cells. Furthermore, arctigenin downregulated the expression of 4EBP1 in MDA-MB-231 and BT549 cells, whereas 4EBP1 overexpression could reverse the inhibiting effect of arctigenin on proliferation, migratory and invasive abilities, and EMT in MDA-MB-231 and BT549 cells. The findings suggested that arctigenin may inhibit human BC cell proliferation, migratory and invasive abilities, and EMT by targeting 4EBP1.
RESUMO
Protein O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine (GlcNAc) to the hydroxyl groups of Ser/Thr residues on numerous nucleocytoplasmic proteins. Two enzymes are responsible for O-GlcNAc cycling on substrate proteins: O-GlcNAc transferase (OGT) catalyzes the addition while O-GlcNAcase (OGA) helps the removal of GlcNAc. O-GlcNAcylation modifies protein functions; therefore, dysregulation of O-GlcNAcylation affects cell physiology and contributes to pathogenesis. To maintain homeostasis of cellular O-GlcNAcylation, there exists feedback regulation of OGT and OGA expression responding to fluctuations of O-GlcNAc levels; yet, little is known about the molecular mechanisms involved. In this study, we investigated the O-GlcNAc-feedback regulation of OGT and OGA expression in lung cancer cells. Results suggest that, upon alterations in O-GlcNAcylation, the regulation of OGA expression occurs at the mRNA level and likely involves epigenetic mechanisms, while modulation of OGT expression is through translation control. Further analyses revealed that the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) contributes to the downregulation of OGT induced by hyper-O-GlcNAcylation; the S5A/S6A O-GlcNAcylation-site mutant of 4E-BP1 cannot support this regulation, suggesting an important role of O-GlcNAcylation. The results provide additional insight into the molecular mechanisms through which cells may fine-tune intracellular O-GlcNAc levels to maintain homeostasis.
Assuntos
Acetilglucosamina/química , Regulação Enzimológica da Expressão Gênica , N-Acetilglucosaminiltransferases/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Peptídeos/química , Processamento de Proteína Pós-Traducional , Ribossomos/química , beta-N-Acetil-Hexosaminidases/químicaRESUMO
Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.
Assuntos
Hepatócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos/fisiologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologiaRESUMO
Among all types of kidney diseases, renal cell carcinoma (RCC) has the highest mortality, recurrence and metastasis rates, which results in high numbers of tumorassociated mortalities in China. Identifying a novel therapeutic target has attracted increasing attention. Bromodomain and extraterminal domain (BET) proteins have the ability to read the epigenome, leading to regulation of gene transcription. As an important member of the BET family, bromodomain testisspecific protein (BRDT) has been well studied; however, the mechanism underlying BRDT in the regulation of RCC has not been fully investigated. Eukaryotic translation initiation factor 4Ebinding protein 1 (eIF4EBP1) is a binding partner of eIF4E that is involved in affecting the progression of various cancer types via regulating gene transcription. To identify novel regulators of eIF4EBP1, an immunoprecipitation assay and mass spectrometry analysis was performed in RCC cells. It was revealed that eIF4EBP1 interacted with BRDT, a novel interacting protein. In addition, the present study further demonstrated that BRDT inhibitors PLX51107 and INCB054329 blocked the progression of RCC cells, along with suppressing eIF4EBP1 and cmyc expression. Small interfering (si) RNAs were used to knock down BRDT expression, which suppressed RCC cell proliferation and eIF4EBP1 protein expression. In addition, overexpression of eIF4EBP1 partially abolished the inhibited growth function of PLX51107 but knocking down eIF4EBP1 improved the inhibitory effects of PLX51107. Furthermore, treatment with PLX51107 or knockdown of BRDT expression decreased cmyc expression at both the mRNA and protein levels, and attenuated its promoter activity, as determined by luciferase reporter assays. PLX51107 also significantly altered the interaction between the cmyc promoter with eIF4EBP1 and significantly attenuated the increase of RCC tumors, accompanied by decreased cmyc mRNA and protein levels in vivo. Taken together, these data suggested that blocking of BRDT by PLX51107, INCB054329 or BRDT knockdown suppressed the growth of RCC via decreasing eIF4EBP1, thereby leading to decreased cmyc transcription levels. Considering the regulatory function of BET proteins in gene transcription, the present study suggested that there is a novel mechanism underlying eIF4EBP1 regulation by BRDT, and subsequently decreased cmyc in RCC, and further identified a new approach by regulating eIF4EBP1 or cmyc for enhancing BRDTtargeting RCC therapy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Renais/genética , Proteínas de Ciclo Celular/genética , Neoplasias Renais/genética , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Compostos Orgânicos/farmacologia , Compostos Orgânicos/uso terapêutico , Oxazóis/farmacologia , Oxazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD40/biossíntese , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Ependimogliais/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD40/genética , Proteínas de Ciclo Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Células Ependimogliais/patologia , Fatores de Iniciação em Eucariotos/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/genética , Regulação para CimaRESUMO
Autophagy, defined as a scavenging process of protein aggregates and damaged organelles mediated by lysosomes, plays a significant role in the quality control of macromolecules and organelles. Since protein kinases are integral to the autophagy process, it is critically important to understand the role of kinases in autophagic regulation. At present, intervention of autophagic processes by small-molecule modulators targeting specific kinases has becoming a reasonable and prevalent strategy for treating several varieties of human disease, especially cancer. In this review, we describe the role of some autophagy-related kinase targets and kinase-mediated phosphorylation mechanisms in autophagy regulation. We also summarize the small-molecule kinase inhibitors/activators of these targets, highlighting the opportunities of these new therapeutic agents.
RESUMO
Rationale: Steroid receptor activator (SRA), a long non-coding RNA, serves as a critical regulator of gynecologic cancer. The objective of this study was to determine biological function and clinical significance of SRA expression in endometrial cancer. Method: We investigated whether SRA was involved in the development of endometrial cancer via binding to eukaryotic translation initiation factor 4E-binding protein 1 (EIF4E-BP1) as a transcription factor to enhance Wnt/ ß-catenin signaling pathway. Results: Expression levels of SRA were upregulated in endometrial cancer tissues compared to those in adjacent control tissues. We also found high expression of SRA in EC cells. The relationship between SRA and EIF4E-BP1 was corroborated by transfection of a luciferase reporter plasmid. In addition, SRA knockdown inhibited the expression of EIF4E-BP1 known to play a critical role in the control of protein synthesis, cell growth, and cell survival, thus promoting tumourigenesis and epithelial-mesenchymal transition (EMT) important for cell motility and metastasis. Consistently, immunostaining and western blotting analysis showed that expression levels of ß-catenin and 4EBP1 in the nucleus were significantly decreased by SRA knockdown but increased by SRA over-expression. Conclusions: These results suggest that SRA is involved in proliferation, migration, and invasion of endometrial cancer cells by increasing the expression of EIF4E-BP1 and activity of Wnt/ ß-catenin signaling. These findings indicate that SRA might be a novel biomarker for predicting recurrence and prognosis. It might also serve as a promising therapeutic target in endometrial cancer.
Assuntos
Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genéticaRESUMO
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) inhibits cap-dependent translation in eukaryotes by competing with eIF4G for an interaction with eIF4E. Phosphorylation at Ser-83 of 4E-BP1 occurs during mitosis through the activity of cyclin-dependent kinase 1 (CDK1)/cyclin B rather than through canonical mTOR kinase activity. Here, we investigated the interaction of eIF4E with 4E-BP1 or eIF4G during interphase and mitosis. We observed that 4E-BP1 and eIF4G bind eIF4E at similar levels during interphase and mitosis. The most highly phosphorylated mitotic 4E-BP1 isoform (δ) did not interact with eIF4E, whereas a distinct 4E-BP1 phospho-isoform, EB-γ, phosphorylated at Thr-70, Ser-83, and Ser-101, bound to eIF4E during mitosis. Two-dimensional gel electrophoretic analysis corroborated the identity of the phosphorylation marks on the eIF4E-bound 4E-BP1 isoforms and uncovered a population of phosphorylated 4E-BP1 molecules lacking Thr-37/Thr-46-priming phosphorylation. Moreover, proximity ligation assays for phospho-4E-BP1 and eIF4E revealed different in situ interactions during interphase and mitosis. The eIF4E:eIF4G interaction was not inhibited but rather increased in mitotic cells, consistent with active translation initiation during mitosis. Phosphodefective substitution of 4E-BP1 at Ser-83 did not change global translation or individual mRNA translation profiles as measured by single-cell nascent protein synthesis and eIF4G RNA immunoprecipitation sequencing. Mitotic 5'-terminal oligopyrimidine RNA translation was active and, unlike interphase translation, resistant to mTOR inhibition. Our findings reveal the phosphorylation profiles of 4E-BP1 isoforms and their interactions with eIF4E throughout the cell cycle and indicate that 4E-BP1 does not specifically inhibit translation initiation during mitosis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Mitose , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Cisteína/análogos & derivados , Cisteína/farmacologia , Fator de Iniciação Eucariótico 4G/metabolismo , Edição de Genes , Células HeLa , Humanos , Interfase , Mitose/efeitos dos fármacos , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, â¼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Assuntos
Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Retina/metabolismo , Acilação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Fatores de Iniciação em Eucariotos , Proteínas do Olho/genética , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Fosfoproteínas/genética , Piranos/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Tiazóis/farmacologiaRESUMO
PRKAG2 encodes the γ2-subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin.NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine ß-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation affects AMP-activated protein kinase activity, activates cell growth pathways, and results in cardiac hypertrophy, which can be reversed with rapamycin.
Assuntos
Proteínas Quinases Ativadas por AMP/genética , Cardiomiopatia Hipertrófica/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/enzimologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Análise Mutacional de DNA , Ativação Enzimática , Fibroblastos/enzimologia , Fibroblastos/patologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenformin/farmacologia , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , TransfecçãoRESUMO
BACKGROUND & AIMS: Hepatic cholesterol accumulation and autophagy defects contribute to hepatocyte injury in fatty liver disease. Bile acid synthesis is a major pathway for cholesterol catabolism in the liver. This study aims to understand the molecular link between cholesterol and bile acid metabolism and hepatic autophagy activity. METHODS: The effects of cholesterol and cholesterol 7α-hydroxylase (CYP7A1) expression on autophagy and lysosome function were studied in cell models. The effects and mechanism of disrupting enterohepatic bile acid circulation on hepatic autophagy were studied in mice. RESULTS: The results first showed differential regulation of hepatic autophagy by free cholesterol and cholesterol ester, whereby a modest increase of cellular free cholesterol, but not cholesterol ester, impaired lysosome function and caused marked autolysosome accumulation. We found that CYP7A1 induction, either by cholestyramine feeding in mice or adenovirus-mediated CYP7A1 expression in hepatocytes, caused strong autophagy induction. Mechanistically, we showed that CYP7A1 expression markedly attenuated growth factor/AKT signaling activation of mechanistic target of rapamycin (mTOR), but not amino acid signaling to mTOR in vitro and in vivo. Metabolomics analysis further found that CYP7A1 induction not only decreased hepatic cholesterol but also altered phospholipid and sphingolipid compositions. Collectively, these results suggest that CYP7A1 induction interferes with growth factor activation of AKT/mTOR signaling possibly by altering membrane lipid composition. Finally, we showed that cholestyramine feeding restored impaired hepatic autophagy and improved metabolic homeostasis in Western diet-fed mice. CONCLUSIONS: This study identified a novel CYP7A1-AKT-mTOR signaling axis that selectively induces hepatic autophagy, which helps improve hepatocellular integrity and metabolic homeostasis.
RESUMO
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism, growth, and proliferation. mTORC1 has been implicated in many diseases such as cancer, diabetes, and neurodegeneration, and is a target to prolong lifespan. Here we report a small molecule inhibitor (Cbz-B3A) of mTORC1 signaling. Cbz-B3A inhibits the phosphorylation of eIF4E-binding protein 1 (4EBP1) and blocks 68% of translation. In contrast, rapamycin preferentially inhibits the phosphorylation of p70(S6k) and blocks 35% of translation. Cbz-B3A does not appear to bind directly to mTORC1, but instead binds to ubiquilins 1, 2, and 4. Knockdown of ubiquilin 2, but not ubiquilins 1 and 4, decreases the phosphorylation of 4EBP1, suggesting that ubiquilin 2 activates mTORC1. The knockdown of ubiquilins 2 and 4 decreases the effect of Cbz-B3A on 4EBP1 phosphorylation. Cbz-B3A slows cellular growth of some human leukemia cell lines, but is not cytotoxic. Thus Cbz-B3A exemplifies a novel strategy to inhibit mTORC1 signaling that might be exploited for treating many human diseases. We propose that Cbz-B3A reveals a previously unappreciated regulatory pathway coordinating cytosolic protein quality control and mTORC1 signaling.
Assuntos
Arginina/análogos & derivados , Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/química , Arginina/farmacologia , Carbamatos/química , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas/metabolismo , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/genéticaRESUMO
By monitoring the fragmentation of a GST-BHMT (a protein fusion of glutathionine S-transferase N-terminal to betaine-homocysteine S-methyltransferase) reporter in lysosomes, the GST-BHMT assay has previously been established as an endpoint, cargo-based assay for starvation-induced autophagy that is largely nonselective. Here, we demonstrate that under nutrient-rich conditions, proteasome inhibition by either pharmaceutical or genetic manipulations induces similar autophagy-dependent GST-BHMT processing. However, mechanistically this proteasome inhibition-induced autophagy is different from that induced by starvation as it does not rely on regulation by MTOR (mechanistic target of rapamycin [serine/threonine kinase]) and PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit), the upstream central sensors of cellular nutrition and energy status, but requires the presence of the cargo receptors SQSTM1/p62 (sequestosome 1) and NBR1 (neighbor of BRCA1 gene 1) that are normally involved in the selective autophagy pathway. Further, it depends on ER (endoplasmic reticulum) stress signaling, in particular ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) and its main downstream effector MAPK8/JNK1 (mitogen-activated protein kinase 8), but not XBP1 (X-box binding protein 1), by regulating the phosphorylation-dependent disassociation of BCL2 (B-cell CLL/lymphoma 2) from BECN1 (Beclin 1, autophagy related). Moreover, the multimerization domain of GST-BHMT is required for its processing in response to proteasome inhibition, in contrast to its dispensable role in starvation-induced processing. Together, these findings support a model in which under nutrient-rich conditions, proteasome inactivation induces autophagy-dependent processing of the GST-BHMT reporter through a distinct mechanism that bears notable similarity with the yeast Cvt (cytoplasm-to-vacuole targeting) pathway, and suggest the GST-BHMT reporter might be employed as a convenient assay to study selective macroautophagy in mammalian cells.
Assuntos
Autofagia/efeitos dos fármacos , Betaína-Homocisteína S-Metiltransferase/metabolismo , Glutationa Transferase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leupeptinas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteína Sequestossoma-1 , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação/efeitos dos fármacosRESUMO
The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL(+) CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL(+) CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL(+) cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL(+) cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.
Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/metabolismo , Proto-Oncogene MasRESUMO
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.