Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Fluoresc ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254816

RESUMO

Herein, two excited-state intramolecular proton transfer (ESIPT)-capable α-cyanostilbene luminogens were synthesized by Schiff base reaction of salicylaldehyde-like α-cyanostilbene candidate with 1-naphthylamine and 3-biphenylamine, respectively. We systematically analyzed their photophysical properties compared with their analogue, and demonstrated that their fluorescence behaviors could be elaborately modulated by different aromatic substitutions tethered to H-acceptor (CH = N). In virtue of the outstanding solid fluorescence, the 3-biphenylamine-decorated fluorophore was applied for monitoring Cu2+/Fe3+ qualitatively on the TLC-based test strip in real time and sensing Cu2+/Fe3+ quantitatively in the THF/H2O medium (fw = 90%, pH = 7.4). When the probe chelated with Cu2+/Fe3+, similar "turn-off" fluorescence signal outputs were triggered. From the fluorescence titration experiments, the detection limits were evaluated as 7.97 × 10- 8 M for Cu2+ and 8.24 × 10- 8 M for Fe3+, and the binding constant (Kα) values of the complexes were found to be 7.80 × 104 M-1 for Cu2+ and 9.06 × 104 M-1 for Fe3+. Job's plots indicated that probe complexed with Cu2+/Fe3+ in a 2:1 binding stoichiometry ratio. Furthermore, the probe was used to accurately quantify the Fe3+ spiked in real water specimens. This study offered a new perspective to construct ESIPT-capable α-cyanostilbene luminogen as the potential luminescent probe.

2.
J Photochem Photobiol B ; 258: 112996, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094239

RESUMO

Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto⁎ forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto⁎ form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto⁎ form are O3 and O5' respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.


Assuntos
Antioxidantes , Flavanonas , Flavonoides , Ligação de Hidrogênio , Flavanonas/química , Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/química , Teoria da Densidade Funcional , Termodinâmica , Elétrons
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125045, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216142

RESUMO

Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780-1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10-4 a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.

4.
J Fluoresc ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167341

RESUMO

Recently, a new fluorescent senor based on 3-hydroxy-2-(naphthalen-2-yl)-4 H-chromen-4-one (HFN) for selective detection of H2Sn was obtained in the experiment (Spectrochim. Acta Part A 271(2022)120962). Based on HFN, three new compounds (HFN1, HFN2 and HFN3) are designed to explore the influences of dimethylamine (-N(CH3)2) and cyano (-CN) groups on the excited-state intramolecular proton transfer (ESIPT) process and luminescent features of HFN. After analyzing the mainly geometrical parameters, electron densities and infrared spectra, we discovered that the intramolecular hydrogen bonds (IHBs) in the target molecules become stronger upon photo-excitation. Introducing -CN or/and -N(CH3)2 groups into HFN indeed influences its ESIPT behavior and luminescent properties. The -N(CH3)2 group enhances IHB, reduces ESIPT barrier and caused absorption/ fluorescence (at T form) peak blue-shift, while the -CN group shows a counterproductive effect. The coincidence of -N(CH3)2 and -CN made the absorption/fluorescent wavelength of HFN red-shift more than single -N(CH3)2 or -CN group does.

5.
Chemistry ; : e202402448, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967476

RESUMO

This article reports the synthesis, along with structural and photophysical characterization of 2-(2'-hydroxyphenyl)benzazole derivatives functionalized with various azaheterocycles (pyridine, pyrimidine, terpyridine). These compounds show dual-state emission properties, that is intense fluorescence both in solution and in the solid-state with a range of fluorescent color going from blue to orange. Moreover, the nature of their excited state can be tuned by the presence of external stimuli such as protons or metal cations. In the absence of stimuli, these dyes show emission stemming from anionic species obtained after deprotonation (D* transition), whereas upon protonation or metal chelation, ESIPT process occurs leading to a stabilized and highly emissive K* transition. With the help of extensive ab initio calculations, we confirm that external stimuli can switch the nature of the transitions, making this series of dyes attractive candidates for the development of stimuli-responsive fluorescent ratiometric probes.

6.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998909

RESUMO

Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different solvents and the chalcogen atomic electronegativity-associated photoexcitation, by time-dependent density functional theory (TDDFT) methods we primarily explore the intramolecular hydrogen bonding interactions and photo-induced charge redistribution behaviors. Via comparing geometrical data and the infrared (IR) spectral shifts-associated hydroxy moiety of ENF, we confirm that the intramolecular hydrogen bond O-H···O should be enhanced with facilitating an excited-state intramolecular proton-transfer (ESIPT) reaction. Particularly, the charge reorganization around hydrogen bonding moieties further reveals the tendency of ESIPT behavior. Combined with the construction of the potential energy surface and the search for reaction transition states, we finally confirmed the solvent-polarity-regulated behaviors as well as the chalcogen elements' electronegativity-dependent ESIPT mechanisms for the ENF fluorophore. We sincerely wish our work could accelerate the further development and applications of flavonoid derivatives.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124866, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059261

RESUMO

The triphenylamine Schiff-base (TPASB) with dual proton transfer sites (N1…H1-O1 [R1] and N2…H2-O2 [R2]), which is crucial in the field of optoelectronic materials. Herein, a novel molecular design strategy for preparing of TPASB-1 and TPASB-2 via the selective methylation of the hydroxyl group at the R2 or R1 position was proposed. The analysis of electronic structures and potential energy surfaces revealed that a single excited state intramolecular proton transfer (ESIPT) process of TPASB occurs only at R1. Nevertheless, the ESIPT process of TPASB-2 was successfully turned on at R2. More noteworthy is that compared to TPASB, the methylation of hydroxyl group at the R2 position triggers the TICT process of TPASB-1, effectively reducing the potential barrier of ESIPT at the R1 position. This theoretical study explains the role of the substituent effect in regulating ESIPT behaviour, and provides valuable guidance for synthesising efficacious ESIPT-active compounds.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124553, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823236

RESUMO

The electronic structure of the molecule is significantly influenced by the number of conjugated C=C bonds. In this work, the influence of the conjugated C=C bonds of the SNCN derivatives on the excited state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) properties are studied by density functional theory (DFT) and time-dependent density functional theory (TDDFT). The calculation level is proved to be reasonable by calculating electronic spectra. The hydrogen bond parameters, infrared vibrational frequency (IR), reduction density gradient (RDG) isosurface, topological analysis and potential energy curves of SNCN derivatives in ground state (S0) and the first excited state (S1) are analyzed. According to theoretical research results, ESIPT reaction has a higher likelihood of occurring in the S1 state. Moreover, the ESIPT reaction becomes more challenging to occur with the number of conjugated C=C bonds rising. Finally, the analyses of the frontier molecular orbitals (FMOs), dipole moment and charge transfer transition confirm that the ICT effect is aided by the increased number of conjugated C=C bonds. This work indicates that the number of conjugated C=C bonds can regulate the ESIPT and ICT processes, which provides guidance for the study of fluorescent groups with similar characteristics.

9.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893566

RESUMO

DFT and TD-DFT were used in this article to investigate the effects of different substitutions at multiple sites on the photophysical mechanism of bis-HBX in the gas phase. Four different substitution modes were selected, denoted as A1 (X=Me, Y=S), A2 (X=OMe, Y=S), B1 (X=Me, Y=NH), and C1 (X=Me, Y=O). The geometric parameters proved that the IHBs enhanced after photoexcitation, which was conducive to promote the ESIPT process. Combining the analysis of the PECs, it was revealed that the bis-HBX molecule underwent the ESIPT process, and the ease of the ESIPT process was in the order of A1 > A2> B1 > C1. In particular, the TICT process in A1 and B1 promoted the occurrence of the ESIPT process. In addition, the IC process was identified, particularly in C1. Meanwhile, the calculation of fluorescence lifetime and fluorescence rate further confirmed that A1 was the most effective fluorescent probe molecule. This theoretical research provides an innovative theoretical reference for regulating ESIPT reactions and optimizing fluorescent probe molecules.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124560, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843615

RESUMO

This work investigates the different charge transfer characteristics and excited state intramolecular proton transfer process (ESIPT) of 2'-aminochalcones derivatives carrying different electron-withdrawing groups. Four new molecules are designed in the experiment and named as 2c, 3c, 4c and 5c, respectively. (Dyes and Pigments, 2022, 202.) Based on these four molecules, the effect of substituents on the ESIPT process and the charge transfer process are discussed in detail in our work. According to the study of the related parameters at the hydrogen bond site, infrared vibration spectrum, interaction region indicator isosurface (IRI) and scatter plots, it is concluded that the hydrogen bond interaction is enhanced under photoexcitation, and the descending order of the excited state hydrogen bond strength is 3c > 5c > 4c > 2c. The hydrogen bond energy is calculated by atoms in moleculs (AIM) topological analysis and core-valence bifurcation (CVB) index. The potential energy curve reveals the ESIPT mechanism. Frontier molecular orbital and electron-hole analyses explain the reasons for the changes in the ESIPT process at the electronic level. In addition, the ionization potentials (IPa and IPv), affinity energies (EAa and EAv) and reorganization energies are calculated to evaluate the potential application value of organic molecules in material transport field.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124412, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733913

RESUMO

In this report, we propose a new insight into the interaction between the solvent-polarity-dependent conformational equilibrium and excited state intramolecular proton transfer (ESIPT) behavior of Pz3HC system in four different polar solvents (polarity order: ACN > THF > TOL > CYC). Using quantum chemistry method, we first announce a coexistence mechanism between Pz3HC-1 and Pz3HC-3 in the ground state in four solvents based on the Boltzmann distribution. In particular, Pz3HC-1 is the principal configuration in non-polar solvent, but Pz3HC-3 is the principal configuration in polar solvent. In addition, the simulated fluorescence spectra interprets the negative solvatochromism effect of Pz3HC-1 and Pz3HC-3 in four solvents. The evidence from intramolecular hydrogen bonding (IHB) parameters and electronic perspective collectively confirms the light-induced IHB enhancement and intramolecular charge transfer (ICT) properties in Pz3HC-1 and Pz3HC-3, which raises the likelihood of the ESIPT process. Combining the calculation of potential energy curve (PEC) and intrinsic reaction coordinate (IRC), we demonstrate that the ESIPT ease of Pz3HC-1 in different polar solvents obeys the order of CYC > TOL > THF > ACN, while the order of ESIPT ease in Pz3HC-3 is opposite. Notably, the ESIPT process of Pz3HC-3 in CYC solvent is accompanied by the twisted intramolecular charge transfer (TICT) process. In addition, we also reveal that the enol* and keto* fluorescence peaks of Pz3HC-3 in CYC solvent are quenched by ISC and TICT process, respectively. Our work not only provides a satisfactory explanation of the novel dynamics mechanism for Pz3HC system, but also brings light to the design and application of new sensing molecules in the future.

12.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578721

RESUMO

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

13.
Chemistry ; 30(33): e202400807, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38590165

RESUMO

Inclusion of a heteroatom to the phosphole ring is a promising strategy to intrinsically modulate the optical properties of phosphole derivatives. We report on a series of 2-aryl-3H-1,3-benzazaphosphole oxides that were efficiently prepared via sequential C-P cross-coupling, dehydrative [3+2] cycloaddition, and ring-oxidation reactions. The inclusion of one nitrogen atom into the benzophosphole framework caused red shifting of the absorption and emission maxima, reflecting the greater stabilization of the LUMO level. 2-(2-Hydroxyphenyl)benzazaphosphole oxide underwent excited state intramolecular proton transfer and emitted a weak fluorescence from the excited state of the N-H tautomer.

14.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611908

RESUMO

As reversible fluorescent probes, HTP-1 and HTP-2 have favourable applications for the detection of Zn2+ and H2S. Herein, the impact of solvent on the excited-state intramolecular proton transfer (ESIPT) of HTP-1 and HTP-2 was comprehensively investigated. The obtained geometric parameters and infrared (IR) vibrational analysis associated with the intramolecular hydrogen bond (IHB) indicated that the strength of IHB for HTP-1 was weakened in the excited state. Moreover, structural torsion and almost no ICT behaviour indicated that the ESIPT process did not occur in HTP-1. Nevertheless, when the 7-nitro-1,2,3-benzoxadiazole (NBD) group replaced the H atom, the IHB strength of HTP-2 was enhanced after photoexcitation, which inhibited the twisting of tetraphenylethylene, thereby opening the ESIPT channel. Notably, hole-electron analysis and frontier molecular orbitals revealed that the charge decoupling effect was the reason for the fluorescence quenching of HTP-2. Furthermore, the potential energy curves (PECs) revealed that HTP-2 was more inclined to the ESIPT process in polar solvents than in nonpolar solvents. With a decrease in solvent polarity, it was more conducive to the ESIPT process. Our study systematically presents the ESIPT process and different detection mechanisms of the two reversible probe molecules regulated by solvent polarity, providing new insights into the design and development of novel fluorescent probes.

15.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542326

RESUMO

4-[5-(Naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD) was extensively studied through stationary UV-vis absorption and fluorescence measurements in various solvents and solvent mixtures and by first-principles quantum chemical calculations. It was observed that while in polar solvents (e.g., methanol) only a single emission band emerged; the analyzed 1,3,4-thiadiazole derivative was capable of producing dual fluorescence signals in low polarity solvents (e.g., n-hexane) and certain solvent mixtures (e.g., methanol/water). As clearly follows from the experimental spectroscopic studies and theoretical modeling, the specific emission characteristic of NTBD is triggered by the effect of enol → keto excited-state intramolecular proton transfer (ESIPT) that in the case of solvent mixture is reinforced by aggregation of thiadiazole molecules. Specifically, the restriction of intramolecular rotation (RIR) due to environmental hindrance suppresses the formation of non-emissive twisted intramolecular charge transfer (TICT) excited keto* states. As a result, this particular thiadiazole derivative is capable of simultaneously producing both ESIPT and aggregation-induced emission (AIE).


Assuntos
Metanol , Tiadiazóis , Espectrometria de Fluorescência , Solventes/química , Prótons
16.
J Fluoresc ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520620

RESUMO

We designed and synthesized a new Schiff base probe, which incorporated the salicylaldehyde-analogue α-cyanostilbene and benzophenone hydrazone by the imine linkage. Its chemical structure was verified by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. It could exhibit a red fluorescence based on the synergistical effects of aggregation-induce emission (AIE), excited-state intramolecular proton transfer (ESIPT) and twisted intramolecular charge-transfer (TICT) in the aggregation or solid states. Interestingly, the TLC-based test strip loaded with the target compound showed the reversible fluorescence response to amine/acid vapor and on-site visual fluorescence quenching response to Fe3+. In THF/water mixtures (fw = 90%, 10 µM, pH = 7.4), the detection limit (DL) and the binding constant (Ka) of the developed probe towards Fe3+ were evaluated as 5.50 × 10- 8 M and 1.69 × 105, respectively. The developed probe was successfully applied for the detection of Fe3+ with practical, reliable, and satisfying results.

17.
Photochem Photobiol Sci ; 23(3): 575-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386257

RESUMO

Our main focus is to explore the atomic electronegativity-dependent photoinduced behavior of styryl derivatives (HBO, HBS, and HBSe). The results of structural parameter calculation by the DFT method show that the intramolecular hydrogen bonds of normal and tautomer form are strengthened and weakened, respectively, in an excited state (S1), which is conducive to the excited intramolecular proton transfer (ESIPT) process. The enhancement of excited hydrogen bond is beneficial to the ESIPT process from the aspects of infrared vibration frequency (IR), Mulliken's charge analysis, and density gradient reduction (RDG). Additionally, by determining the bond energy with the band critical point (BCP) parameter, we found that the lower the electronegativity of the atom, the larger the hydrogen bond strength at the excited state and the more likely ESIPT reaction occurs. Meanwhile, the intramolecular H-bonds O-H…N in HBO, HBS, and HBSe are enhanced with the weakened electron-withdrawing capacity of the atom (from O to S and Se). Subsequently, frontier molecular orbital (FMOs) and charge density difference (CDD) analyses essentially revealed that electron redistribution induces the ESIPT process. Low atomic electronegativity exhibits the high chemical activity of the excited state. Furthermore, to demonstrate the electronegativity-dependent ESIPT behavior of the system, we built potential energy curves (PECs) and located the transition states (TS) of proton transfer processes.

18.
Chemphyschem ; 25(8): e202400069, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38358389

RESUMO

Given its wide variety of applications in the pharmaceutical industry, the synthesis of imidazo[1,2-a]pyridines has been extensively studied since the beginning of the last century. Here, we disclose the mechanism for the synthesis of imidazo[1,2-a]pyridines by means of the Ortoleva-King reaction. We also reveal the reaction pathway leading to the formation of a iodinated byproduct, demonstrating the challenge of preventing the formation of such a byproduct because of the low energy barrier to access it. Moreover, quantum chemistry tools were employed to investigate the mechanism of intramolecular proton transfer in the excited state, and connections with aromaticity were explored.

19.
Photochem Photobiol ; 100(4): 956-968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299663

RESUMO

The photophysical studies of fluorescent probes in micellar medium can give a better insight about their interaction with biological membranes. This study attempts to access the photophysical properties of the dual emitting azine based probe diethylamino salicylidene azine dimer (DEASAD) in micellar media. DEASAD showed dual charge transfer emission due to the presence of open enol (480 nm) and closed enol (510 nm) forms in polar protic solvents. Upon increasing the concentration of ionic surfactants, there is a significant increase in the emission intensity of both the enol forms of DEASAD until premicellar concentration. After micellization, occurrence of a new anomalous keto form emission through excited state intramolecular proton transfer (ESIPT) was observed around 530 nm in ionic micelles and its intensity changes depend on the micellar surface charge. The emission studies revealed the position and interaction of DEASAD with the charge of micellar stern layer as confirmed through interaction of metal ion with the probe and control molecules with and without ESIPT and ICT moieties. In contrast, the new anomalous longer wavelength keto form of DEASAD emission was absent in neutral micelles like Triton X-100.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124043, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368821

RESUMO

Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J. Phys. Chem. A, 125 (2021), 4784-4792]. The observed fluorescence in chloroform was attributed to the keto tautomer. Based on the excited state intramolecular proton transfer, the photochromism of 2,4-bImP in chloroform was interpreted as zwitterion production. However, the zwitterion with a specific electronic structure can be in resonance with the conventional neutral structure. The impact of the resonance contribution from the zwitterion and the conventional neutral structure on fluorescence attribution was not taken into account in the previous studies. In this investigation, the ESIPT mechanism of the 2,4-bImP in chloroform has been explored using both the density functional theory and the time-dependent density functional theory. The optimized geometric configuration parameters illustrate the molecular resonant properties. The calculated fluorescence spectra on the basis of the optimization results further corroborate that the fluorescence peaks after proton transfer originates from the resonance of the zwitterionic and the neutral configuration. The zwitterionic nature of the molecule was demonstrated by electrostatic potential and atomic dipole modified Hesfeld atomic charge (ADCH) analysis. Furthermore, the characterization of potential energy curves and IR spectrum further verified the resonance of both the zwitterionic and neutral structures. The results reveal that the 2,4-bImP molecule generates the neutral o-quinoid structure and the zwitterionic structure resonance phenomenon following ESIPT. The aforementioned resonance structure offers novel insights into the ascription of fluorescence. These discoveries establish the theoretical foundation for the exploration and development of zwitterions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA