Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Oncol Lett ; 28(3): 407, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988445

RESUMO

Despite significant improvements that have been made in terms of progression-free survival and overall survival rates brought about by targeted therapy in non-small cell lung cancer (NSCLC), the emergence of drug resistance remains a limiting factor. However, a previous study has shown promising results by combining local microwave ablation (MWA) with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy for patients with oligometastatic NSCLC. The current study presented the case of a Chinese female patient who was identified as having lung adenocarcinoma (LADC) with EGFR exon 19 deletions (Del) in January 2014, and who experienced multiple instances of oligoprogression but showed a positive response to a combination of chemotherapy, MWA and a TKI drug. First, the patient was treated with four cycles of chemotherapy (120 mg docetaxel on day 1 and 40 mg cisplatin on days 1, 2 and 3; every three weeks as one cycle) and gefitinib (Iressa; 250 mg/day), maintaining a partial response for 17 months. In August 2015, a new solitary lesion was identified in the right lung and erlotinib (Tarceva; 150 mg/day) was administered for 3 months thereafter. In response, the patient underwent ablation of both the new right lung lesion and the primary left lung lesion in January 2016. Subsequently, a treatment course consisting of six cycles of chemotherapy (0.8 g pemetrexed on day 1 and 70 mg nedaplatin on days 1 and 2; every three weeks as one cycle) resulted in stable disease. In May 2016, the patient began treatment with osimertinib (AZD9291; 80 mg/day), resulting in a rapid shrinkage of the mediastinal lymph node after one month, which has been providing a benefit for the patient for 82 months and counting. Of note, the patient also developed metachronous colon cancer in January 2020, followed by the identification of right posterior liver metastases in February 2020 and lung metastases in May 2021 and in February 2022. To address this, the patient underwent radical resection of colon cancer and liver metastasectomy and received a combination of chemotherapy with bevacizumab, along with MWA for lung metastases. Remarkably, the patient has achieved long-term survival of 110 months. In conclusion, this case highlights the promising potential of combining MWA with systemic therapy for a patient with advanced LADC harboring EGFR exon 19 Del and metachronous lung and liver-metastasized colon adenocarcinoma. MWA effectively controlled both in situ oligoprogression and new oligoprogression, thereby enhancing the efficacy of systematic chemotherapy/TKI therapy. Furthermore, this case report emphasizes the importance of repeated histologic biopsies and genetic testing as reliable indicators for adjusting treatment regimens. Physicians should also remain vigilant regarding the occurrence of secondary primary carcinomas, and timely and accurate adjustments to treatment plans will be of significant benefit to patients in terms of treatment efficacy and overall quality of life.

2.
Case Rep Nephrol Dial ; 14(1): 104-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015124

RESUMO

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, which is mainly caused by pathogenic variants in two particular genes: PKD1 and PKD2. ADPKD caused by variants in other genes (GANAB or IFT140) is very rare. Case Report: In a 6-year-old girl examined for abdominal pain, a cystic mass in the upper part of the right kidney was detected during an abdominal ultrasound. She was referred to pediatric oncology and urology for suspicion of a tumorous mass and the condition was assessed as a cystic nephroma. A heminephrectomy was then performed on the upper cystic part of the right kidney. The histological examination was inconclusive; therefore, genetic testing was recommended. Kidney and liver cysts were detected sonographically in the mother, but DNA analysis of the PKD1 and PKD2 genes did not reveal any pathogenic variant; the cause of the pathological formation in the kidneys remained unclear. Nine years later, next-generation sequencing of a panel of genes for kidney disease was performed and a heterozygous deletion was found on chromosome 16; this included exon 13 of the IFT140 gene. The same deletion was found in the patient's mother. Currently, the patient is 14 years old and has mild sonographic findings, normal glomerular filtration, mild proteinuria, and hypertension. Conclusion: Pathogenic variants of the IFT140 gene very rarely cause ADPKD; however, they should be considered in all children with autosomal dominant forms of PKD and asymmetric/atypical cystic kidney involvement or negative findings of PKD1 and PKD2.

3.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917794

RESUMO

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Assuntos
Éxons , Humanos , Éxons/genética , Sistemas CRISPR-Cas , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Aptidão Genética , Células HEK293 , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Sítios de Splice de RNA , Mutação , Regulação da Expressão Gênica , Processamento Alternativo
4.
Acta Diabetol ; 61(1): 107-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37704826

RESUMO

AIMS: Maturity-onset diabetes of the young (MODY) is an autosomal dominant monogenic form of diabetes, and glucokinase-maturity-onset diabetes of the young (GCK-MODY), or MODY 2, being the most prevalent type. However, the presence of copy number variants (CNVs) may lead to misdiagnoses, as genetic testing for MODY is typically reliant on sequencing techniques. This study aimed to describe the process of diagnosis in a Chinese pedigree with an exon 8-10 deletion of the GCK gene. METHODS: This study collected clinical data and medical history through direct interviews with the patient and reviewing relevant medical records. Sanger sequencing and whole exome sequencing (WES) were conducted over years of follow up. WES-based CNV sequencing technology was used to detect CNVs and the results were validated by multiplex ligation-dependent amplification dosage assay (MLPA). Additionally, we reviewed the previously reported cases caused by heterozygous exon deletion of the GCK gene. RESULTS: WES-based CNV detection revealed a heterozygous exon 8-10 deletion in the GCK gene within this particular pedigree after Sanger sequencing and WES failed to find causal variants in single nucleotide variations (SNVs) and small indels. The deletion was considered pathogenic according to ACMG/AMP and ClinGen guidelines. Most of the previously reported cases caused by heterozygous exon deletion or whole gene deletion of the GCK gene present similarly to GCK-MODY caused by SNVs and small indels. CONCLUSIONS: This study contributed to progress in our comprehension of the mutation spectrum of the GCK gene and underscored the significance of CNV detection in the genetic testing of MODY.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Deleção de Genes , Testes Genéticos/métodos , Glucoquinase/genética , Mutação
5.
Mol Genet Genomic Med ; 11(10): e2232, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37430472

RESUMO

BACKGROUND: Exon deletions are generally considered pathogenic, particularly when they are located out of frame. Here, we describe a pediatric, female patient presenting with hypercalcemia and a small cell carcinoma of the ovary, hypercalcemic type, and carrying a germline de novo SMARCA4 exon 14 deletion. METHODS: The SMARCA4 deletion was identified by whole genome sequencing, and the effect on the RNA level was examined by gel- and capillary electrophoresis and nanopore sequencing. RESULTS: The deletion was in silico predicted to be truncating, but RNA analysis revealed two major transcripts with deletion of exon 14 alone or exon 14 through 15, where the latter was located in-frame. Because the patient's phenotype matched that of other patients with pathogenic germline variants in SMARCA4, the deletion was classified as likely pathogenic. CONCLUSION: We propose to include RNA analysis in classification of single-exon deletions, especially if located outside of known functional domains, as this can identify any disparate effects on the RNA and DNA level, which may have implications for variant classification using the American College of Medical Genetics and Genomics guidelines.

6.
Iran J Child Neurol ; 17(1): 29-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721834

RESUMO

Objective: Duchene Muscular dystrophy (DMD) is the common X-linked heterogenous progressive muscular dystrophy characterized by mutations in the DMD gene. The frequency of dystrophin gene mutations is varied in different DMD population. A precise diagnosis can help to reduce the severity of DMD since it aids in planning of targeted medical treatment and required therapies. This study was aimed to investigate the mutation type, their rate and distribution of DMD'S in southern India. Materials & Materials: An observational study was conducted on 250 genetically confirmed DMD patients from March,2019 to March,2021. The distribution pattern and rate of mutations (deletion, duplication, nonsense mutations, minor mutations) were investigated. Results: Mutation spectrum was studied on 250 DMD patients, of which 63% exon deletion pattern were reported. 16% deletions were detected in proximal hot region (exons 3-28). The duplications were found 21% in the proximal hotspot largest region (exon 3-25). 16% of the patients reported single deletion (45 exon), 10.7% reported deletions of exon 44. Point mutations detected in 6%, small mutations were detected in 1.2%, non-sense mutations were detected in 2% of study population respectively. Missense Mutations were detected in 0.8% of study population. Conclusion: This study estimates mutation spectrum of exon deletion pattern (63%) was predominantly identified in distal region; duplication was most frequent in proximal region. Point mutations, Nonsense mutations and small mutations have a least accountability. This study adds a real world evidence for developing research therapies in DMD.

7.
J Pers Med ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36836560

RESUMO

Amelogenesis imperfecta (AI) is a heterogeneous collection of hereditary enamel defects. The affected enamel can be classified as hypoplastic, hypomaturation, or hypocalcified in form. A better understanding of normal amelogenesis and improvements in our ability to diagnose AI through genetic testing can be realized through more complete knowledge of the genes and disease-causing variants that cause AI. In this study, mutational analysis was performed with whole exome sequencing (WES) to identify genetic etiology underlying the hypomaturation AI condition in affected families. Mutational analyses identified biallelic WDR72 mutations in four hypomaturation AI families. Novel mutations include a homozygous deletion and insertion mutation (NM_182758.4: c.2680_2699delinsACTATAGTT, p.(Ser894Thrfs*15)), compound heterozygous mutations (paternal c.2332dupA, p.(Met778Asnfs*4)) and (maternal c.1287_1289del, p.(Ile430del)) and a homozygous 3694 bp deletion that includes exon 14 (NG_017034.2:g.96472_100165del). A homozygous recurrent mutation variant (c.1467_1468delAT, p.(Val491Aspfs*8)) was also identified. Current ideas on WDR72 structure and function are discussed. These cases expand the mutational spectrum of WDR72 mutations causing hypomaturation AI and improve the possibility of genetic testing to accurately diagnose AI caused by WDR72 defects.

8.
Am J Med Genet A ; 191(3): 776-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537114

RESUMO

WWOX biallelic loss-of-function pathogenic single nucleotide variants (SNVs) and copy number variants (CNVs) including exonic deletions and duplications cause WWOX-related epileptic encephalopathy (WOREE) syndrome. This disorder is characterized by refractory epilepsy, axial hypotonia, peripheral hypertonia, progressive microcephaly, and premature death. Here we report five patients with WWOX biallelic predicted null variants identified by exome sequencing (ES), genome sequencing (GS), and/or chromosomal microarray analysis (CMA). SNVs and intragenic deletions of one or more exons were commonly reported in WOREE syndrome patients which made the genetic diagnosis challenging and required a combination of different diagnostic technologies. These patients presented with severe, developmental and epileptic encephalopathy (DEE), and other cardinal features consistent with WOREE syndrome. This report expands the clinical phenotype associated with this condition, including failure to thrive in most patients and epilepsy that responded to a ketogenic diet in three patients. Dysmorphic features and abnormal prenatal findings were not commonly observed. Additionally, recurrent pancreatitis and sensorineural hearing loss each were observed in single patients. In summary, these phenotypic features broaden the clinical spectrum of WOREE syndrome.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Feminino , Gravidez , Humanos , Epilepsia/diagnóstico , Epilepsia/genética , Síndromes Epilépticas/genética , Encefalopatias/genética , Epilepsia Generalizada/genética , Éxons , Oxidorredutase com Domínios WW/genética , Proteínas Supressoras de Tumor/genética
9.
J Pers Med ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248755

RESUMO

Generalized arterial calcification of infancy (GACI) is a rare autosomal-recessive disease characterized by extensive arterial calcification in infancy, with clinical manifestations such as arterial stenoses and heart failure. The ENPP1 inactivation mutation has been identified as a potential defect in most of the cases of GACI, while mutations in ABCC6 are demonstrated in patients who are genotyped as pseudoxanthoma elasticum and only limited cases of GACI are reported. Whole-exome sequencing was applied for the detection of pathogenic variants. Copy-number variants of pathogenic genes were also evaluated through a bioinformatic process and were further validated by real-time quantitative PCR. In this report, we described the clinical information and treatment of a patient with extensive arterial calcification. We have identified the underlying cause as biallelic mutations in ABCC6 (NM_00117: exon30, c.4223_4227dupAGCTC p.(Leu1410Serfs*56)) and a unique exonic deletion that spans from the first to the fourth exons of ABCC6 (chr16:16313388-16330869)). This discovery was made by utilizing a combined genetic testing approach. With the review of previously reported GACI patients with ABCC6 mutation, our work contributed to enriching the mutation spectrum of GACI and providing further information on this rare form of inherited disorder.

11.
Front Pediatr ; 10: 1022980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533240

RESUMO

Red cell pyruvate kinase (PK) deficiency is the most common cause of hereditary nonspherocytic hemolytic anemia and the most frequent enzyme abnormality of the glycolytic pathway. To the best of our knowledge, this is the first Korean PK deficiency study that analyzes copy number variation (CNV) using next-generation sequencing (NGS). A 7-year-old girl with jaundice was admitted for evaluation of a persistent hemolytic anemia. The proband appeared chronically ill, showing a yellowish skin color, icteric sclera, hepatomegaly, and splenomegaly on physical examination. Sequence variants and CNV generated from NGS data were estimated to determine if there was a potential genetic cause. As a result, compound heterozygosity in the PKLR gene for a large exon deletion between exon 3 and exon 9 accompanied with a novel rare p.Gly536Asp variant located on exon 10 was identified as a cause of severe PK deficiency in the proband. The PK activity of the proband had been measured at the time of day 1, 21, and 28 after receiving transfusion to indirectly assume the effect of the transfused blood, and the results were 100.9%, 73.0%, and 48.5%, compared with average of normal controls, respectively. Our report emphasizes the need to perform complete CNV analysis of NGS data and gene dosage assays such as multiplex ligation-dependent probe amplification to evaluate large deletions or duplications/insertions of the PKLR gene in patients with suspected PK deficiency.

12.
Hum Mutat ; 43(12): 1816-1823, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317458

RESUMO

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.


Assuntos
Hipotonia Muscular , Doenças Musculares , Proteínas Serina-Treonina Quinases , Humanos , Variações do Número de Cópias de DNA , Exoma , Sequenciamento do Exoma , Éxons/genética , Hipotonia Muscular/genética , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Lactente
13.
Biosens Bioelectron ; 208: 114191, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366426

RESUMO

Precise detection of low-frequency gene mutations surrounded by excess wild-type DNA is important in many aspects of medical fields. Most hybridization-based methods for high-resolution mutant allele analysis are hindered by competition of the complementary strand with single-strand probes for the target strand. Here, we demonstrate that site-specific insertion of endonuclease recognition sites into amplicons allows post-PCR generation of short dsDNA or ssDNA, whereby improves the sensitivity of both melting temperature analysis (MTA) and end-point detection following up. Using a three-staged PCR protocol, enrichment of target gene and incorporation of specific restriction sites in amplicons were ensued with hardly any loss in amplification efficiency and specificity. It enables simultaneous discrimination among a panel of totally 11 EGFR 19 exon deletion mutations via MTA after post-PCR digestion by either FokI only or cooperated with CRISPR-Cas12a, using SYBR green I. By replacement of one double-strand cleavage site with a nickase binding domain post-PCR generation of ssDNA of interest via strand displacement amplification (termed as iSDA) is realized. Our preliminary investigation shows that iSDA permits analysis of single nucleotide variants down to 0.1% allelic-frequency using end-point detection. Given the good compatibility with the majority of mutant-enrich PCR methods, we envision it would advance the current gene profiling technologies to a large extent.


Assuntos
Técnicas Biossensoriais , Endonucleases , DNA de Cadeia Simples/genética , Mutação , Reação em Cadeia da Polimerase/métodos
14.
Front Pharmacol ; 13: 868863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392567

RESUMO

Introduction: Severity and disease progression in people with Cystic Fibrosis (CF) is typically dependent on their genotype. One potential therapeutic strategy for people with specific mutations is exon skipping with antisense oligonucleotides (AO). CFTR exon 9 is an in-frame exon and hence the exclusion of this exon would excise only 31 amino acids but not alter the reading frame of the remaining mRNA. Splice mutations 1209 + 1 G > C and 1209 + 2 T > G were documented to cause CFTR exon 9 skipping and these variants were reported to manifest as a milder CF disease, therefore exon 9 skipping could be beneficial for people with class I mutations that affect exon 9 such as p.Trp401X. While the impact of exon 9 skipping on gene expression and cellular pathways can be studied in cells in vitro, trace amount of full-length normal or mutated material could confound the evaluation. To overcome this limitation, the impact of CFTR exon 9 skipping on disease phenotype and severity is more effectively evaluated in a small animal model. It was hypothesised that antisense oligonucleotide-mediated skipping this particular exon could result in a "mild mouse CF phenotype". Methods: Cftr exon 9 deleted mice were generated using homologous recombination. Survival of homozygous (Cftr Δ9/Δ9 ) and heterozygous (Cftr Δ9/+ ) mice was compared to that of other CF mouse models, and lung and intestinal organ histology examined for any pathologies. Primary airway epithelial cells (pAECs) were harvested from Cftr Δ9/Δ9 mice and cultured at the Air Liquid Interface for CFTR functional assessment using Ussing Chamber analysis. Results: A Cftr Δ9/Δ9 mouse model presented with intestinal obstructions, and at time of weaning (21 days). Cftr Δ9/Δ9 mice had a survival rate of 83% that dropped to 38% by day 50. Histological sections of the small intestine from Cftr Δ9/Δ9 mice showed more goblet cells and mucus accumulation than samples from the Cftr Δ9/+ littermates. Airway epithelial cell cultures established from Cftr Δ9/Δ9 mice were not responsive to forskolin stimulation. Summary: The effect of Cftr exon 9 deletion on Cftr function was assessed and it was determined that the encoded Cftr isoform did not result in a milder "mouse CF disease phenotype," suggesting that Cftr exon 9 is not dispensable, although further investigation in human CF pAECs would be required to confirm this observation.

15.
Front Pediatr ; 9: 679342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912755

RESUMO

The gene encoding collagen like tail subunit of asymmetric acetylcholinesterase (COLQ) is responsible for the transcription of three strands of collagen of acetylcholinesterase, which is attached to the endplate of neuromuscular junctions. Mutations in the COLQ gene are inherited in an autosomal-recessive manner and can lead to type V congenital myasthenia syndrome (CMS), which manifests as decreased muscle strength at birth or shortly after birth, respiratory failure, restricted eye movements, drooping of eyelids, and difficulty swallowing. Here we reported three variants within COLQ in two unrelated children with CMS. An intronic variant (c.393+1G>A) and a novel missense variant (p.Q381P) were identified as compound heterozygous in a 13-month-old boy, with the parents being carriers of each. An intragenic deletion including exons 14 and 15 was found in a homozygous state in a 12-year-old boy. We studied the relative expression of the COLQ and AChE gene in the probands' families, performed three-dimensional protein structural analysis, and analyzed the conservation of the missense mutation c.1142A>C (p.Q381P). The splicing mutation c.393+1G>A was found to affect the normal splicing of COLQ exon 5, resulting in a 27-bp deletion. The missense mutation c.1142A>C (p.Q381P) was located in a conserved position in different species. We found that homozygous deletion of COLQ exons 14-15 resulted in a 241-bp deletion, which decreased the number of amino acids and caused a frameshift translation. COLQ expression was significantly lower in the probands than in the probands' parents and siblings, while AChE expression was significantly higher. Moreover, the mutations were found to cause significant differences in the predicted three-dimensional structure of the protein. The splicing mutation c.393+1G>A, missense mutation c.1A>C (p.Q381P), and COLQ exon 14-15 deletion could cause CMS.

16.
Front Genet ; 12: 690216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373684

RESUMO

PACS1 neurodevelopmental disorder (PACS1-NDD) is a category of rare disorder characterized by intellectual disability, speech delay, dysmorphic facial features, and developmental delay. Other various physical abnormalities of PACS1-NDD might involve all organs and systems. Notably, there were only two unique missense mutations [c.607C > T (p.Arg203Trp) and c.608G > A (p.Arg203Gln)] in PACS1 that had been identified as pathogenic variants for PACS1-NDD or Schuurs-Hoeijmakers syndrome (SHMS). Previous reports suggested that these common missense variants were likely to act through dominant-negative or gain-of-function effects manner. It is still uncertain whether the intragenic deletion or duplication in PACS1 will be disease-causing. By using whole-exome sequencing, we first identified a novel heterozygous multi-exon deletion covering exons 12-24 in PACS1 (NM_018026) in four individuals (two brothers and their father and grandfather) in a three-generation family. The younger brother was referred to our center prenatally and was evaluated before and after the birth. Unlike SHMS, no typical dysmorphic facial features, intellectual problems, and structural brain anomalies were observed among these four individuals. The brothers showed a mild hypermyotonia of their extremities at the age of 3 months old and recovered over time. Mild speech and cognitive delay were also noticed in the two brothers at the age of 13 and 27 months old, respectively. However, their father and grandfather showed normal language and cognitive competence. This study might supplement the spectrum of PACS1-NDD and demonstrates that the loss of function variation in PACS1 displays no contributions to the typical SHMS which is caused by the recurrent c.607C > T (p.Arg203Trp) variant.

17.
Mol Plant ; 13(9): 1262-1269, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645290

RESUMO

The next-generation hybrid seed technology enables the successful production of sortable hybrid seeds from genic male sterile (GMS) lines and maintainers; however, it requires multiple laborious and complicated steps. Here, we designed a simple next-generation hybrid seed production strategy that takes advantage of the CRISPR/Cas9 technology to create a Manipulated GMS Maintainer (MGM) system via a single transformation. Under this schema, the maize male fertility gene ZmMS26 was nullified by removal of its fifth exon using the CRISPR/Cas9 system on a vector, and a second vector carrying a functional ZmMS26 cDNA was co-transformed to restore fertility. The second vector also contains a male gametophyte inactivation gene (ZmAA1) encoding maize α-amylase driven by the pollen-specific promoter PG47 and an endosperm fluorescent marker (DsRED) driven by the barley endosperm aleurone-specific promoter Ltp2. The derived single-copy hemizygous MGM lines bore a mutated MS26 gene, leading to complete male sterility but normal vegetative growth and grain yield. The MGM system could prevent genetic transmission of the MGM elements via male gametophytes, providing an efficient method for sorting maintainer seeds labeled by DsRED. This strategy can be extended to any GMS gene and to hybrid crops other than maize.


Assuntos
Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas/genética , DNA Complementar/genética , Éxons/genética , Infertilidade das Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas/genética
18.
Cells ; 9(3)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214056

RESUMO

NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, "long" (NF-YAl) and "short" (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and-to a lesser extent, MyoD- levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Fusão Celular , Linhagem Celular , Células Clonais , Éxons/genética , Regulação da Expressão Gênica , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/metabolismo , Miogenina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo
19.
Eur J Med Genet ; 62(8): 103681, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31136843

RESUMO

Cystic fibrosis (MIM #219700) is one of the most common autosomal recessively inherited diseases in Caucasians and is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. However, this disease is much less frequent in Asian populations. Here, we performed a clinical characterization of, and genetic analysis of CFTR in, Korean patients with cystic fibrosis. Six Korean patients from five families (two females and four males; median age, 12.5 years) were enrolled. Clinical data were assessed by retrospective review of medical records. The genetic variants of CFTR were analysed by sequencing analysis and multiple ligation-dependent probe amplification (MLPA). Among the six patients, five had at least one allele with a deletion of exons 16-17 b: four had a heterozygous deletion and one had a homozygous deletion. Six of 12 alleles (50%) showed 16-17 b multi-exon deletion. All six patients had a classical cystic fibrosis phenotype and presented with chronic steatorrhea and malabsorption from infancy, resulting in growth failure and chronic recurrent respiratory symptoms, including chronic sinusitis, mucus plugging, and bronchiectasis. All patients survived with supportive care. Early diagnosis and management are important for improving the clinical outcomes of patients with cystic fibrosis. Because of the high frequency of multi- or single-exon deletions in CFTR, we suggest that molecular investigation for identifying exon deletions should be performed to establish an early confirmative diagnosis in Asian populations, including populations in Korea and Japan.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Éxons/genética , Deleção de Sequência/genética , Adolescente , Alelos , Criança , Fibrose Cística/patologia , Feminino , Testes Genéticos , Humanos , Masculino , Mutação/genética , República da Coreia
20.
Genet Med ; 21(9): 2135-2144, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30890783

RESUMO

PURPOSE: To provide a validated method to confidently identify exon-containing copy-number variants (CNVs), with a low false discovery rate (FDR), in targeted sequencing data from a clinical laboratory with particular focus on single-exon CNVs. METHODS: DNA sequence coverage data are normalized within each sample and subsequently exonic CNVs are identified in a batch of samples, when the target log2 ratio of the sample to the batch median exceeds defined thresholds. The quality of exonic CNV calls is assessed by C-scores (Z-like scores) using thresholds derived from gold standard samples and simulation studies. We integrate an ExonQC threshold to lower FDR and compare performance with alternate software (VisCap). RESULTS: Thirteen CNVs were used as a truth set to validate Atlas-CNV and compared with VisCap. We demonstrated FDR reduction in validation, simulation, and 10,926 eMERGESeq samples without sensitivity loss. Sixty-four multiexon and 29 single-exon CNVs with high C-scores were assessed by Multiplex Ligation-dependent Probe Amplification (MLPA). CONCLUSION: Atlas-CNV is validated as a method to identify exonic CNVs in targeted sequencing data generated in the clinical laboratory. The ExonQC and C-score assignment can reduce FDR (identification of targets with high variance) and improve calling accuracy of single-exon CNVs respectively. We propose guidelines and criteria to identify high confidence single-exon CNVs.


Assuntos
Variações do Número de Cópias de DNA/genética , Éxons/genética , Genoma Humano/genética , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA