Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Anim ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069480

RESUMO

In humans, cerebral malaria is the most common cause of malaria-related mortality. Mouse C57BL/6 (B6) sub-strains are the major model system for experimental cerebral malaria (ECM) as they show similar pathophysiology to human cerebral malaria after infection with the rodent malaria parasite Plasmodium berghei ANKA. This model system has been used to analyze the molecular mechanisms of cerebral malaria. To develop new mouse models, we analyzed the ECM susceptibility of NOD/Shi (NOD) and NSY/Hos (NSY) strains established from the non-inbred ICR strain. Both NOD and NSY strains exhibited clinical symptoms and pathologies similar to ECM in C57BL/6J (B6J) mice and died within 11 days of infection. Thus, the NOD and NSY strains are susceptible to ECM and may be useful as new ECM models. The ECM susceptibility of both strains is suggested to be due to homozygosity for the cerebral malaria susceptibility allele of the ECM susceptible ICR strain. Although analyses using B6 sub-strains have proposed that complement component 5 (C5) plays an important role in ECM pathogenesis, we found that C5 was not essential as the ECM susceptible NOD strain is C5 deficient. Thus, results obtained from B6 sub-strains may not reflect the full picture of ECM in mice. Comparative analyses of multiple ECM models will contribute to a more accurate identification of the factors essential for ECM.

2.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.


Assuntos
Malária Cerebral , Camundongos Endogâmicos C57BL , Plasmodium berghei , Animais , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium berghei/efeitos dos fármacos , Administração Oral , Inflamação/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/patologia , Encéfalo/parasitologia , Encéfalo/efeitos dos fármacos , Feminino , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Neuropatologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase
4.
Mem. Inst. Oswaldo Cruz ; 117: e220184, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422137

RESUMO

BACKGROUND Cerebral malaria is a lethal complication of Plasmodium falciparum infections in need of better therapies. Previous work in murine experimental cerebral malaria (ECM) indicated that the combination of artemether plus intraperitoneal whole blood improved vascular integrity and increased survival compared to artemether alone. However, the effects of blood or plasma transfusion administered via the intravenous route have not previously been evaluated in ECM. OBJECTIVES To evaluate the effects of intravenous whole blood compared to intravenous plasma on hematological parameters, vascular integrity, and survival in artemether-treated ECM. METHODS Mice with late-stage ECM received artemether alone or in combination with whole blood or plasma administered via the jugular vein. The outcome measures were hematocrit and platelets; plasma angiopoietin 1, angiopoietin 2, and haptoglobin; blood-brain barrier permeability; and survival. FINDINGS Survival increased from 54% with artemether alone to 90% with the combination of artemether and intravenous whole blood. Intravenous plasma lowered survival to 18%. Intravenous transfusion provided fast and pronounced recoveries of hematocrit, platelets, angiopoietins levels and blood brain barrier integrity. MAIN CONCLUSIONS The outcome of artemether-treated ECM was improved by intravenous whole blood but worsened by intravenous plasma. Compared to prior studies of transfusion via the intraperitoneal route, intravenous administration was more efficacious.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA