RESUMO
In this chapter, we describe a multi-purpose, reversed-phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflow for acquiring high-quality, non-targeted exposomics data utilizing data-dependent acquisition (DDA) combined with the use of toxicant inclusion lists for semi-targeted analysis. In addition, we describe expected retention times for >160 highly diverse xenobiotics in human plasma and serum samples. The method described is intended to serve as a generic LC-HRMS exposomics workflow for research and educational purposes. Moreover, it may be employed as a primer, allowing for further adaptations according to specialized research needs, e.g., by including reference and/or internal standards, by expanding to data-independent acquisition (DIA), or by modifying the list of compounds prioritized in fragmentation experiments (MS2).
Assuntos
Espectrometria de Massas , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Fluxo de Trabalho , Metabolômica/métodos , Xenobióticos/análise , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas em Tandem/métodos , Exposição Ambiental/análiseRESUMO
Since the 1960s, more than 350,000 new chemicals have been introduced into the lives of humans and domestic animals. Many of them have become part of modern life and some are affecting nature as pollutants. Yet, our comprehension of their potential health risks for both humans and animals remains partial. The "epithelial barrier theory" suggests that genetic predisposition and exposure to diverse factors damaging the epithelial barriers contribute to the emergence of allergic and autoimmune conditions. Impaired epithelial barriers, microbial dysbiosis, and tissue inflammation have been observed in a high number of mucosal inflammatory, autoimmune and neuropsychiatric diseases, many of which showed increased prevalence in the last decades. Pets, especially cats and dogs, share living spaces with humans and are exposed to household cleaners, personal care products, air pollutants, and microplastics. The utilisation of cosmetic products and food additives for pets is on the rise, unfortunately, accompanied by less rigorous safety regulations than those governing human products. In this review, we explore the implications of disruptions in epithelial barriers on the well-being of companion animals, drawing comparisons with humans, and endeavour to elucidate the spectrum of diseases that afflict them. In addition, future research areas with the interconnectedness of human, animal, and environmental well-being are highlighted in line with the "One Health" concept.
RESUMO
The past several years have provided a more profound understanding of the role of microbial species in the lung. The respiratory tract is a delicate ecosystem of bacteria, fungi, parasites, and viruses. Detecting microbial DNA, pathogen-associated molecular patterns (PAMPs), and metabolites in sputum is poised to revolutionize the early diagnosis of lung cancer. The longitudinal monitoring of the lung microbiome holds the potential to predict treatment response and side effects, enabling more personalized and effective treatment options. However, most studies into the lung microbiota have been observational and have not adequately considered the impact of dietary intake and air pollutants. This gap makes it challenging to establish a direct causal relationship between environmental exposure, changes in the composition of the microbiota, lung carcinogenesis, and tumor progression. A holistic understanding of the lung microbiota that considers both diet and air pollutants may pave the way to improved prevention and management strategies for lung cancer.
RESUMO
Dementia is a public health concern in the aging population with an estimated 55 million people impacted globally. Public health initiatives that focus on minimizing dementia risk factors may support efforts to reduce the incidence of dementia in at-risk populations. Exposomics considers both modifiable and non-modifiable risk factors for disease, including genetic changes with age and lifetime exposures to environmental, social, and behavioral risk factors. Dementia precursors may remain undetected for up to 20 years. An understanding and application of the dementia exposome may promote healthy brain interventions, screening, and risk mitigation. The proposed dementia public health exposome (DPHE) provides a framework for understanding and addressing the complex interactions between genetics, health behavior, and environment (natural, built, and social) linked to modifiable and non-modifiable risk factors for dementia. The DPHE may be used to inform public health strategies and advancements in healthy brain initiatives.
RESUMO
BACKGROUND: Limited data document the spectrum of exposures in the agricultural environment. We describe here the wide range of chemical and physical agents, and organizational factors, encountered in agricultural jobs held in the past in Canada and abroad. METHODS: We used data from a population-based case-control study of prostate cancer including 3,925 male participants residing in Montreal, Canada in 2005-2012. Lifetime occupational histories and detailed job descriptions were collected in-person. Industrial hygienists and an agronomist conducted semi-quantitative evaluations of exposure, including intensity and reliability, to some 300 chemical and physical agents in each job held. Analyses focused on the 156 agricultural jobs ever held in the study population. Clusters of agricultural co-exposures were derived. RESULTS: Agricultural jobs had taken place in 1946-2012, 53% ending in 1970 or after. Jobs were often (43%) held in Quebec, Canada; 22% in Italy, Portugal or Greece, and 10% in Haiti. Jobs entailed exposure to an average of 10 chemical agents (± 7) and most were characterized by long working hours, high physical activity levels, and did not provoke stress or anxiety. Few involved early morning shifts. Exposure to 78 agents was assigned with probable or definite certainty. The most common definite or probable carcinogens were ultraviolet radiation (92% of jobs), environmental tobacco smoke (39%), diesel engine exhaust (23%), wood dust (20%), lubricating oils and greases (20%) and lead (15%). Pesticide exposure (as a group) occurred in 31% of jobs. Fifty-four percent of jobs entailed exposure to ≥ 2 recognized carcinogens. Exposure clusters varied according to countries and type of agricultural activities (general, animal, crops, horticulture, vineyards, etc.). CONCLUSIONS: Findings highlight the heterogeneity of exposure patterns in past agricultural environments based on their setting and activities involved. Studies on health-related effects of farming should account for numerous potential exposures, beyond their typical focus on pesticides.
RESUMO
OBJECTIVE: Exposure to environmental contaminants is globally universal. However, communities vary in the specific combination of contaminants to which they are exposed, potentially contributing to variation in human health and creating "locally situated biologies." We investigated how environmental exposures differ across environments by comparing exposure profiles between two contexts that differ markedly across political, economic, and sociocultural factors-Namqom, Formosa, Argentina, and New Haven, Connecticut, United States. METHODS: We collected infant urine, maternal urine, and human milk samples from mother-infant dyads in Formosa (n = 13) and New Haven (n = 21). We used untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS) to annotate environmental contaminants and endogenous metabolites in these samples, and we analyzed the data using exposome-wide association studies (EWAS) followed by pathway enrichment. RESULTS: We found statistically significant differences between the chemical exposure profiles of the Argentinian and US mothers, mostly involving pesticides; however, we observed similarities in the infant urine and human milk environmental contaminant profiles, suggesting that the maternal body may buffer infant exposure through human milk. We also found that infants and mothers were exposed to contaminants that were associated with alterations in amino acid and carbohydrate metabolism. Infants additionally showed alterations in vitamin metabolism, including vitamins B1, B3, and B6. CONCLUSIONS: Differences in chemical exposure profiles may be related to structural factors. Despite variation in the composition of exposure profiles between the two study sites, environmental contaminant exposure was associated with similar patterns in human physiology when we considered contaminants comprehensively rather than individually, with implications for metabolic and cardiovascular disease risk as well as infant cognitive development.
RESUMO
BACKGROUND: Cardiovascular diseases (CVD) are a leading cause of mortality worldwide, influenced by genetic, environmental, and behavioral factors. This study examines the relationship between heavy metal exposure, chronic physiological stress (allostatic load), and lipid profiles, which are markers of CVD risk, using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. METHODS: We utilized structural equation modeling (SEM) to explore the associations between blood levels of lead, cadmium, allostatic load (AL), and lipid measures (low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides). The AL index was derived from cardiovascular, inflammatory, and metabolic biomarkers and categorized into quartiles to identify high-risk individuals, with an index out of 10 subsequently developed. RESULTS: The SEM analysis revealed that both heavy metal exposure and allostatic load are significantly associated with lipid profiles. Higher levels of lead and cadmium were associated with increased LDL and triglycerides, while higher AL scores were linked to increased LDL and triglycerides and decreased HDL levels. Age was also a significant factor, showing positive correlations with LDL and triglycerides, and a negative correlation with HDL. CONCLUSIONS: This study underscores the multifactorial nature of CVD, highlighting the combined impact of environmental pollutants and physiological stress on lipid dysregulation. These findings suggest the need for integrated public health strategies that address both environmental exposures and chronic stress to mitigate cardiovascular risk. Further research is warranted to explore the underlying mechanisms and develop targeted interventions.
Assuntos
Exposição Ambiental , Estresse Fisiológico , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Exposição Ambiental/efeitos adversos , Doenças Cardiovasculares , Poluentes Ambientais , Alostase , Cádmio/sangue , Inquéritos Nutricionais , Lipídeos/sangue , Metais Pesados/sangue , Chumbo/sangue , Biomarcadores/sangue , Triglicerídeos/sangueRESUMO
For comprehensive chemical exposomics in blood, analytical workflows are evolving through advances in sample preparation and instrumental methods. We hypothesized that gas chromatography-high-resolution mass spectrometry (GC-HRMS) workflows could be enhanced by minimizing lipid coextractives, thereby enabling larger injection volumes and lower matrix interference for improved target sensitivity and nontarget molecular discovery. A simple protocol was developed for small plasma volumes (100-200 µL) by using isohexane (H) to extract supernatants of acetonitrile-plasma (A-P). The HA-P method was quantitative for a wide range of hydrophobic multiclass target analytes (i.e., log Kow > 3.0), and the extracts were free of major lipids, thereby enabling robust large-volume injections (LVIs; 25 µL) in long sequences (60-70 h, 70-80 injections) to a GC-Orbitrap HRMS. Without lipid removal, LVI was counterproductive because method sensitivity suffered from the abundant matrix signal, resulting in low ion injection times to the Orbitrap. The median method quantification limit was 0.09 ng/mL (range 0.005-4.83 ng/mL), and good accuracy was shown for a certified reference serum. Applying the method to plasma from a Swedish cohort (n = 32; 100 µL), 51 of 103 target analytes were detected. Simultaneous nontarget analysis resulted in 112 structural annotations (12.8% annotation rate), and Level 1 identification was achieved for 7 of 8 substances in follow-up confirmations. The HA-P method is potentially scalable for application in cohort studies and is also compatible with many liquid-chromatography-based exposomics workflows.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Lipídeos , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos/sangue , Plasma/químicaRESUMO
BACKGROUND: Very few studies to date investigated the prospective association of changes in exposure to the food environment with cardiovascular disease (CVD) risk. We aim to explore if time-varying exposure to the food environment was associated with hospitalization and mortality due to total and specific types of CVD in The Netherlands. METHODS: In this prospective cohort study, 4,641,435 Dutch adults aged 35 + years who did not change residence in 2002-2018 were identified through registry data. Exposure to the food environment was defined as time-varying Food Environment Healthiness Index (FEHI) scores (range: - 5 to 5) and time-varying kernel density of specific food retailers (e.g., fast food outlets, supermarkets) around the home location between 2004 and 2018. The main outcome measures were hospitalization and mortality due to overall CVD, stroke, HF, and CHD occurring between 2004 and 2020, based on hospital and death registries. RESULTS: In Cox regression models, each unit increase in the FEHI was associated with a lower hospitalization and mortality of CVD (hospitalization hazard ratio (HRh) = 0.90 (0.89 to 0.91), mortality hazard ratio (HRm) = 0.85 (0.82 to 0.89)), CHD (HRh = 0.88 (0.85 to 0.91), HRm = 0.80 (0.75 to 0.86)), stroke (HRh = 0.89 (0.84 to 0.93)), HRm = 0.89 (0.82 to 0.98)), and HF (HRh = 0.90 (0.84-0.96), HRm = 0.84 (0.76 to 0.92)). Increased density of local food shops, fast food outlets, supermarkets, and convenience stores and decreased density of food delivery outlets and restaurants were associated with a higher risk of CVD, CHD, stroke, and HF hospitalization and mortality. CONCLUSIONS: In this observational longitudinal study, changes in exposure to a healthier food environment over 14 years were associated with a risk reduction in CVD hospitalization and mortality, in particular in urbanized areas and for younger adults and those with higher incomes.
Assuntos
Doenças Cardiovasculares , Hospitalização , Humanos , Países Baixos/epidemiologia , Hospitalização/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Masculino , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Fast Foods/efeitos adversos , Fast Foods/estatística & dados numéricos , Supermercados , Abastecimento de Alimentos/estatística & dados numéricos , Fatores de TempoRESUMO
The exposome concept aims to account for the comprehensive and cumulative effects of physical, chemical, biological, and psychosocial influences on biological systems. To date, limited exposome research has explicitly included climate change-related exposures. We define these exposures as those that will intensify with climate change, including direct effects like extreme heat, tropical cyclones, wildfires, downstream effects like air pollution, power outages, and limited or contaminated food and water supplies. These climate change-related exposures can occur individually or simultaneously. Here, we discuss the concept of a climate mixture, defined as three or more simultaneous climate change-related exposures, in the context of the exposome. In a motivating climate mixture example, we consider the impact of a co-occurring tropical cyclone, power outage, and flooding on respiratory hospitalizations. We identify current gaps and future directions for assessing the effect of climate mixtures on health. Mixtures methods allow us to incorporate climate mixtures into exposomics.
RESUMO
BACKGROUND: Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES: We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS: We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n=10) or low (n=10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS: The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p=0.007). Thirteen proteins showed a ≥ 2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION: Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
RESUMO
Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. "Point Source" signatures are characterized by elevated concentration in the vicinity of major release locations. A "Population" signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The "Water Source" signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a "Uniform" signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.
Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Canadá , Humanos , Exposição por Inalação/análise , Expossoma , Poluição do ArRESUMO
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Assuntos
Asma , Exposição Ambiental , Função Executiva , Expossoma , Humanos , Criança , Função Executiva/fisiologia , Exposição Ambiental/efeitos adversosRESUMO
Background: With its high and increasing lifetime prevalence, back pain represents a contemporary challenge for patients and healthcare providers. Monitored exercise therapy is a commonly prescribed treatment to relieve pain and functional limitations. However, the benefits of exercise are often gradual, subtle, and evaluated by subjective self-reported scores. Back pain pathogenesis is interlinked with epigenetically mediated processes that modify gene expression without altering the DNA sequence. Therefore, we hypothesize that therapy effects can be objectively evaluated by measurable epigenetic histone posttranslational modifications and proteome expression. Because epigenetic modifications are dynamic and responsive to environmental exposure, lifestyle choices-such as physical activity-can alter epigenetic profiles, subsequent gene expression, and health traits. Instead of invasive sampling (e.g., muscle biopsy), we collect easily accessible buccal swabs and plasma. The plasma proteome provides a systemic understanding of a person's current health state and is an ideal snapshot of downstream, epigenetically regulated, changes upon therapy. This study investigates how molecular profiles evolve in response to standardized sport therapy and non-controlled lifestyle choices. Results: We report that the therapy improves agility, attenuates back pain, and triggers healthier habits. We find that a subset of participants' histone methylation and acetylation profiles cluster samples according to their therapy status, before or after therapy. Integrating epigenetic reprogramming of both buccal cells and peripheral blood mononuclear cells (PBMCs) reveals that these concomitant changes are concordant with higher levels of self-rated back pain improvement and agility gain. Additionally, epigenetic changes correlate with changes in immune response plasma factors, reflecting their comparable ability to rate therapy effects at the molecular level. We also performed an exploratory analysis to confirm the usability of molecular profiles in (1) mapping lifestyle choices and (2) evaluating the distance of a given participant to an optimal health state. Conclusion: This pre-post cohort study highlights the potential of integrated molecular profiles to score therapy efficiency. Our findings reflect the complex interplay of an individual's background and lifestyle upon therapeutic exposure. Future studies are needed to provide mechanistic insights into back pain pathogenesis and lifestyle-based epigenetic reprogramming upon sport therapy intervention to maintain therapeutic effects in the long run.
RESUMO
AIMS: Brain structural alterations begin long before the presentation of brain disorders; therefore, we aimed to systematically investigate a wide range of influencing factors on neuroimaging markers of brain health. METHODS: Utilizing data from 30,651 participants from the UK Biobank, we explored associations between 218 modifiable factors and neuroimaging markers of brain health. We conducted an exposome-wide association study using the least absolute shrinkage and selection operator (LASSO) technique. Restricted cubic splines (RCS) were further employed to estimate potential nonlinear correlations. Weighted standardized scores for neuroimaging markers were computed based on the estimates for individual factors. Finally, stratum-specific analyses were performed to examine differences in factors affecting brain health at different ages. RESULTS: The identified factors related to neuroimaging markers of brain health fell into six domains, including systematic diseases, lifestyle factors, personality traits, social support, anthropometric indicators, and biochemical markers. The explained variance percentage of neuroimaging markers by weighted standardized scores ranged from 0.5% to 7%. Notably, associations between systematic diseases and neuroimaging markers were stronger in older individuals than in younger ones. CONCLUSION: This study identified a series of factors related to neuroimaging markers of brain health. Targeting the identified factors might help in formulating effective strategies for maintaining brain health.
Assuntos
Encéfalo , Neuroimagem , Humanos , Masculino , Feminino , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Adulto , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Reino Unido/epidemiologia , Estilo de VidaRESUMO
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
RESUMO
Background: Comprehensive environmental risk characterization, encompassing physical, chemical, social, ecological, and lifestyle stressors, necessitates innovative approaches to handle the escalating complexity. This is especially true when considering individual and population-level diversity, where the myriad combinations of real-world exposures magnify the combinatoric challenges. The GeoTox framework offers a tractable solution by integrating geospatial exposure data from source-to-outcome in a series of modular, interconnected steps. Results: Here, we introduce the GeoTox open-source R software package for characterizing the risk of perturbing molecular targets involved in adverse human health outcomes based on exposure to spatially-referenced stressor mixtures. We demonstrate its usage in building computational workflows that incorporate individual and population-level diversity. Our results demonstrate the applicability of GeoTox for individual and population-level risk assessment, highlighting its capacity to capture the complex interplay of environmental stressors on human health. Conclusions: The GeoTox package represents a significant advancement in environmental risk characterization, providing modular software to facilitate the application and further development of the GeoTox framework for quantifying the relationship between environmental exposures and health outcomes. By integrating geospatial methods with cutting-edge exposure and toxicological frameworks, GeoTox offers a robust tool for assessing individual and population-level risks from environmental stressors. GeoTox is freely available at https://niehs.github.io/GeoTox/.
RESUMO
Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.
Assuntos
Doenças Cardiovasculares , Microplásticos , Humanos , Nanopartículas/efeitos adversos , Exposição Ambiental/efeitos adversos , PlásticosRESUMO
OBJECTIVES: To assess the predictive potential of the in utero exposome in relation to childhood adiposity as indicated by body mass index z-scores (BMIz) and the fourth versus first quartile of % fat mass (FM) at median age of 4.6 years. METHODS: We leveraged data on clinical risk factors for childhood obesity during the perinatal period, along with cord blood per/polyfluoroalkyl substances (PFAS) and cord blood DNA methylation, in 268 mother-offspring pairs. We used the sparsity ranked LASSO penalized regression framework for each outcome and assessed model performance based on % variability explained for BMIz and area under the receiver operating characteristic curve (AUC) for the fourth versus first quartile of %FM. We employed cross-validation for model tuning and split-sample validation for model evaluation. RESULTS: Mean ± SD BMIz was 0.01 ± 1.1, %FM was 19.8 ± 6.34%. The optimal model for predicting BMIz explained 19.1% of the variability in the validation set and included only clinical characteristics: maternal pre-pregnancy BMI, paternal BMI, gestational weight gain, physical activity during pregnancy and child race/ethnicity. The optimal model for fourth versus first quartiles of %FM achieved an AUC of 0.82 ± 0.01 in the validation set, with the clinical features again emerging as the strongest predictors. CONCLUSION: In this study sample, perinatal chemical exposures and the epigenome have low utility in predicting childhood adiposity, beyond known clinical risk factors.
RESUMO
Chemical risk assessments typically focus on single substances, often overlooking real-world co-exposures to chemical mixtures. Mixture toxicology studies using representative mixtures can reveal potential chemical interactions, but these do not account for the unique chemical profiles that occur in the blood of diverse individuals. Here we used the H295R steroidogenesis assay to screen personalized mixtures of 24 persistent organic pollutants (POPs) for cytotoxicity and endocrine disruption. Each mixture was reconstructed at a human exposure relevant concentration (1×), as well as at 10- and 100-fold higher concentration (10×, 100×) by acoustic liquid handling based on measured blood concentrations in a Swedish cohort. Among the twelve mixtures tested, nine mixtures decreased the cell viability by 4-18%, primarily at the highest concentration. While the median and maximum mixtures based on the whole study population induced no measurable effects on steroidogenesis at any concentration, the personalized mixture from an individual with the lowest total POPs concentration was the only mixture that affected estradiol synthesis (35% increase at the 100× concentration). Mixtures reconstructed from blood levels of three different individuals stimulated testosterone synthesis at the 1× (11-15%) and 10× concentrations (12-16%), but not at the 100× concentration. This proof-of-principle personalized toxicity study illustrates that population-based representative chemical mixtures may not adequately account for the toxicological risks posed to individuals. It highlights the importance of testing a range of real-world mixtures at relevant concentrations to explore potential interactions and non-monotonic effects. Further toxicological studies of personalized contaminant mixtures could improve chemical risk assessment and advance the understanding of human health, as chemical exposome data become increasingly available.