Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 12: e16972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495753

RESUMO

The article presents results of using remote sensing images and machine learning to map and assess land potential based on time-series of potential Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) composites. Land potential here refers to the potential vegetation productivity in the hypothetical absence of short-term anthropogenic influence, such as intensive agriculture and urbanization. Knowledge on this ecological land potential could support the assessment of levels of land degradation as well as restoration potentials. Monthly aggregated FAPAR time-series of three percentiles (0.05, 0.50 and 0.95 probability) at 250 m spatial resolution were derived from the 8-day GLASS FAPAR V6 product for 2000-2021 and used to determine long-term trends in FAPAR, as well as to model potential FAPAR in the absence of human pressure. CCa 3 million training points sampled from 12,500 locations across the globe were overlaid with 68 bio-physical variables representing climate, terrain, landform, and vegetation cover, as well as several variables representing human pressure including: population count, cropland intensity, nightlights and a human footprint index. The training points were used in an ensemble machine learning model that stacks three base learners (extremely randomized trees, gradient descended trees and artificial neural network) using a linear regressor as meta-learner. The potential FAPAR was then projected by removing the impact of urbanization and intensive agriculture in the covariate layers. The results of strict cross-validation show that the global distribution of FAPAR can be explained with an R2 of 0.89, with the most important covariates being growing season length, forest cover indicator and annual precipitation. From this model, a global map of potential monthly FAPAR for the recent year (2021) was produced, and used to predict gaps in actual vs. potential FAPAR. The produced global maps of actual vs. potential FAPAR and long-term trends were each spatially matched with stable and transitional land cover classes. The assessment showed large negative FAPAR gaps (actual lower than potential) for classes: urban, needle-leave deciduous trees, and flooded shrub or herbaceous cover, while strong negative FAPAR trends were found for classes: urban, sparse vegetation and rainfed cropland. On the other hand, classes: irrigated or post-flooded cropland, tree cover mixed leaf type, and broad-leave deciduous showed largely positive trends. The framework allows land managers to assess potential land degradation from two aspects: as an actual declining trend in observed FAPAR and as a difference between actual and potential vegetation FAPAR.


Assuntos
Clima , Florestas , Humanos , Agricultura , Estações do Ano
2.
Front Plant Sci ; 12: 794409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956294

RESUMO

The maximizing of water use efficiency (WUE) and radiation use efficiency (RUE) is vital to improving crop production in dryland farming systems. However, the fundamental question as to the association of WUE with RUE and its underlying mechanism under limited-water availability remains contentious. Here, a two-year field trial for maize designed with five progressive soil drying regimes applied at two different growth stages (three-leaf stage and seven-leaf stage) was conducted during the 2013-2014 growing seasons. Both environmental variables and maize growth traits at the leaf and canopy levels were measured during the soil drying process. The results showed that leaf WUE increased with irrigation reduction at the early stage, while it decreased with irrigation reduction at the later stage. Leaf RUE thoroughly decreased with irrigation reduction during the progressive soil drying process. Aboveground biomass (AGB), leaf area index (LAI), a fraction of absorbed photosynthetically active radiation (fAPAR), and light extinction coefficient (k) of the maize canopy were significantly decreased by water deficits regardless of the growth stages when soil drying applied. The interrelationships between WUE and RUE were linear across the leaf and canopy scales under different soil drying patterns. Specifically, a positive linear relationship between WUE and RUE are unexpectedly found when soil drying was applied at the three-leaf stage, while it turned out to be negative when soil drying was applied at the seven-leaf stage. Moreover, the interaction between canopy WUE and RUE was more regulated by fAPAR than LAI under soil drying. Our findings suggest that more attention must be paid to fAPAR in evaluating the effect of drought on crops and may bring new insights into the interrelationships of water and radiation use processes in dryland agricultural ecosystems.

3.
Remote Sens Environ ; 263: 112561, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34538937

RESUMO

A framework is proposed for assessing the physical consistency between two terrestrial Essential Climate Variables (ECVs) products retrieved from Earth Observation at global scale. The methodology assessed the level of agreement between the temporal variations of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). The simultaneous changes were classified according to their sign, magnitude and level of confidence, whereby the respective products uncertainties were taken into consideration. A set of proposed agreement metrics were used to identify temporal and spatial biases of non-coherency, non-significance, sensitivity and the overall level of agreement of the temporal changes between two ECVs. We applied the methodology using the Joint Research Center (JRC) Two-stream Inversion Package (TIP) products at 1 km, those provided by the Copernicus Global Land Service (CGLS) based on the SPOT/VGT and Proba-V at 1 km, and the MODIS MCD15A3 at 500 m. In addition, the same analysis was applied with aggregated products at a larger scale over Southern Africa. We found that the CGLS LAI and FAPAR products lacked consistency in their spatial and temporal changes and were severely affected by trends. The MCD15A3 products were characterized by the highest number of non-coherent changes between the two ECVs but temporal inconsistencies were mainly located over the eastern hemisphere. The JRC-TIP products were highly consistent. The results showed the advantages of physically-based retrieval algorithms, in both JRC-TIP and MODIS products, and indicated also that, except for MODIS over forests, aggregated products using an uncertainty-based weighted average led to higher agreement between the ECVs changes.

4.
Remote Sens Environ ; 2512020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36082362

RESUMO

The ESA's forthcoming FLuorescence EXplorer (FLEX) mission is dedicated to the global monitoring of the vegetation's chlorophyll fluorescence by means of an imaging spectrometer, FLORIS. In order to properly interpret the fluorescence signal in relation to photosynthetic activity, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem with Sentinel-3 (S3), which conveys the Ocean and Land Colour Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In this work we present the retrieval models of four essential biophysical variables: (1) Leaf Area Index (LAI), (2) leaf chlorophyll content (Cab), (3) fraction of absorbed photosynthetically active radiation (fAPAR), and (4) fractional vegetation cover (FCover). These variables can be operationally inferred by hybrid retrieval approaches, which combine the generalization capabilities offered by radiative transfer models (RTMs) with the flexibility and computational efficiency of machine learning methods. The RTM SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) was used to generate a database of reflectance spectra corresponding to a large variety of canopy realizations, which served subsequently as input to train a Gaussian Process Regression (GPR) algorithm for each targeted variable. Three sets of GPR models were developed, based on different spectral band settings: (1) OLCI (21 bands between 400 and 1040 nm), (2) FLORIS (281 bands between 500 and 780 nm), and (3) their synergy. Their respective performances were assessed based on simulated reflectance scenes. Regarding the retrieval of Cab, the OLCI model gave good model performances (R2: 0.91; RMSE: 7.6 µg. cm -2), yet superior accuracies were achieved as a result of FLORIS' higher spectral resolution (R2: 0.96; RMSE: 4.8 µg. cm -2). The synergy of both datasets did not further enhance the variable retrieval. Regarding LAI, the improvement of the model performances by using only FLORIS spectra (R2: 0.87; RMSE: 1.05 m2.m-2) rather than only OLCI spectra (R2: 0.86; RMSE: 1.12 m2.m-2) was less evident but merging both data sets was more beneficial (R2: 0.88; RMSE: 1.01 m2.m-2). Finally, the three data sources gave good model performances for the retrieval of fAPAR and Fcover, with the best performing model being the Synergy model (fAPAR: R2: 0.99; RMSE: 0.02 and FCover: R2: 0.98; RMSE: 0.04). The ability of the models to process real data was subsequently demonstrated by applying the OLCI models to S3 surface reflectance products acquired over Western Europe and Argentina. Obtained maps showed consistent patterns and variable ranges, and comparison against corresponding Sentinel-2 products (coarsened to a 300 m spatial resolution) led to reasonable matches (R2: 0.5-0.7). Altogether, given the availability of the multiple data sources, the FLEX tandem mission will foster unique opportunities to quantify essential vegetation properties, and hence facilitate the interpretation of the measured fluorescence levels.

5.
Int J Appl Earth Obs Geoinf ; 80: 1-12, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31885527

RESUMO

The temporal consistency of the fAPAR GEOV2 full time series (constituted by data derived from SPOT-VGT1/2 and PROBA-V) is analyzed against the single-sensor MODIS dataset, with a particular focus on the most recent fAPAR anomalies (z-scores) produced from PROBA-V in the period 2014-2017. The intercomparison highlights a systematic overestimation of GEOV2 fAPAR z-scores when compared to MODIS fAPAR, likely related to the observed positive bias (over 90% of the domain) in the PROBA-V vs. SPOT-VGT1/2 relationship. A simple two-step harmonization procedure has been proposed to remove this discrepancy, based on two separate linear corrections of SPOT-VGT1/2 (2001-2013) and PROBA-V (2014-2017) data with respect to MODIS, followed by a time lag correction. The harmonized GEOV2 time series preserves the overall dynamic of fAPAR, while removing the sensor bias and improving the consistency with MODIS data. The fAPAR anomalies from the harmonized GEOV2 time series provide unbiased estimates of z-scores that are overall well correlated (R = 0.55 ± 0.25) with the MODIS fAPAR anomalies.

6.
Sensors (Basel) ; 19(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443603

RESUMO

Drought in Australia has widespread impacts on agriculture and ecosystems. Satellite-based Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) has great potential to monitor and assess drought impacts on vegetation greenness and health. Various FAPAR products based on satellite observations have been generated and made available to the public. However, differences remain among these datasets due to different retrieval methodologies and assumptions. The Quality Assurance for Essential Climate Variables (QA4ECV) project recently developed a quality assurance framework to provide understandable and traceable quality information for Essential Climate Variables (ECVs). The QA4ECV FAPAR is one of these ECVs. The aim of this study is to investigate the capability of QA4ECV FAPAR for drought monitoring in Australia. Through spatial and temporal comparison and correlation analysis with widely used Moderate Resolution Imaging Spectroradiometer (MODIS), Satellite Pour l'Observation de la Terre (SPOT)/PROBA-V FAPAR generated by Copernicus Global Land Service (CGLS), and the Standardized Precipitation Evapotranspiration Index (SPEI) drought index, as well as the European Space Agency's Climate Change Initiative (ESA CCI) soil moisture, the study shows that the QA4ECV FAPAR can support agricultural drought monitoring and assessment in Australia. The traceable and reliable uncertainties associated with the QA4ECV FAPAR provide valuable information for applications that use the QA4ECV FAPAR dataset in the future.

7.
PeerJ ; 6: e5457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155360

RESUMO

Potential natural vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location if not impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing machine learning algorithms-neural networks (nnet package), random forest (ranger), gradient boosting (gbm), K-nearest neighborhood (class) and Cubist-for operational mapping of PNV. Three case studies were considered: (1) global distribution of biomes based on the BIOME 6000 data set (8,057 modern pollen-based site reconstructions), (2) distribution of forest tree taxa in Europe based on detailed occurrence records (1,546,435 ground observations), and (3) global monthly fraction of absorbed photosynthetically active radiation (FAPAR) values (30,301 randomly-sampled points). A stack of 160 global maps representing biophysical conditions over land, including atmospheric, climatic, relief, and lithologic variables, were used as explanatory variables. The overall results indicate that random forest gives the overall best performance. The highest accuracy for predicting BIOME 6000 classes (20) was estimated to be between 33% (with spatial cross-validation) and 68% (simple random sub-setting), with the most important predictors being total annual precipitation, monthly temperatures, and bioclimatic layers. Predicting forest tree species (73) resulted in mapping accuracy of 25%, with the most important predictors being monthly cloud fraction, mean annual and monthly temperatures, and elevation. Regression models for FAPAR (monthly images) gave an R-square of 90% with the most important predictors being total annual precipitation, monthly cloud fraction, CHELSA bioclimatic layers, and month of the year, respectively. Further developments of PNV mapping could include using all GBIF records to map the global distribution of plant species at different taxonomic levels. This methodology could also be extended to dynamic modeling of PNV, so that future climate scenarios can be incorporated. Global maps of biomes, FAPAR and tree species at one km spatial resolution are available for download via http://dx.doi.org/10.7910/DVN/QQHCIK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA