Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.585
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 959-969, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39226836

RESUMO

Bismuth oxybromide (BiOBr) nanomaterials are well-known efficient powder-shaped photocatalyst for degrading antibiotic wastewater, but their practical applications have been limited by unsatisfactory photo-absorption, weak photocatalytic activity and poor recyclability. To address these issues, we demonstrate that the growing of S-doped BiOBr nanosheets on carbon fiber cloth (CFC) can lead to efficient photocatalysis with recyclable features. With carbon fiber cloth as the substrate, S-doped BiOBr (BiOBr-Sx) nanosheets (diameter: ∼500 nm, thicknesses: ∼5-90 nm) was prepared by solvothermal method with thiourea as dopant. With the increase of thiourea (0-0.2 g) in the precursor solution, BiOBr-Sx nanosheets exhibit a significant shift in the photo-absorption edge from 420 to 461 nm and decreased thicknesses from 90 to 5 nm, accompanying by the increased proportion of (010) exposed surface. Amony them, CFC/BiOBr-S0.5 can degrade various contaminants (such as 98.7 % levofloxacin (LVFX), 95.6 % ciprofloxacin (CIP) and 95.9 % tetracycline (TC)) with most degradation efficiency within 120 min of visible light irradiation, which are 1.6, 1.9 and 1.4 times than that of CFC/BiOBr (61.4 % LVFX, 49.5 % CIP and 67.1 % TC), respectively. Significantly, when CFC/BiOBr-S0.05 photocatalytic fabric is combined with a multi-stage flow device to treat the flowing wastewater (10 mg/L LVFX, rate: 1 L/h), 91.0 % LVFX can be degraded after tenth grade. Therefore, this study not only demonstrates the controllable preparation of S-doped BiOBr nanosheets with different thickness on CFC but also highlights the practical applications of fabric-based photocatalysts for purifying the flowing sewage efficiently.


Assuntos
Antibacterianos , Bismuto , Nanoestruturas , Águas Residuárias , Bismuto/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Águas Residuárias/química , Catálise , Nanoestruturas/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Fibra de Carbono/química , Enxofre/química , Processos Fotoquímicos , Purificação da Água/métodos , Tamanho da Partícula , Propriedades de Superfície , Tetraciclina/isolamento & purificação , Tetraciclina/química , Carbono/química , Fotólise
2.
Sci Rep ; 14(1): 23164, 2024 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369046

RESUMO

New azo Schiff base disperse dyes based on a chromene moiety were synthesized by reacting (2-amino-7-hydroxy-4-(4-methoxyphenyl)-4 H-chromene-3 carbonitrile) and(2-amino-4-(3,4-dimethoxyphenyl)-7-hydroxy-4 H-chromene-3-carbonitrile), with vanillin and ninhydrin, producing new chromene Schiff base derivatives, which in turn were coupled with 2-chloro-4-nitroaniline diazonium salt to give new 4 azo disperse dyes (1-4). The structures of the prepared dyes were confirmed using elemental analysis, 1HNMR spectroscopy, mass spectrometry, and IR. The synthesized dyes were applied to polyester and nylon fabrics using different dyeing techniques: high temperature- high pressure, and ultrasonic dyeing methods. The highest K/S values for all investigated dyes were achieved usinga high temperature-high pressure dyeing technique. Also, the color reflectance of all synthesized dyes with different dyeing shades (1%, 2%, and 3%) was obtained. The fastness properties of the dyed samples using the investigated dyes showed good color fastness toward light, washing, rubbing, and perspiration fastness. The presence of a chromene moiety and Schiff base in the investigated dyes promotes a higher antimicrobial activity on nylon and polyester fabrics against all tested bacteria (E. coli gram-negative and Staphylococcus aureus gram-positive) and two fungi, Aspergillus Niger and Candida albicans.


Assuntos
Anti-Infecciosos , Compostos Azo , Benzopiranos , Corantes , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Corantes/química , Corantes/síntese química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/síntese química , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Têxteis , Testes de Sensibilidade Microbiana
3.
Parasit Vectors ; 17(1): 420, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375740

RESUMO

BACKGROUND: Studies evaluating the attrition, physical and insecticidal durability of dual active ingredient (AI) insecticide-treated nets (ITNs) are essential for making programmatic decisions regarding their deployment. We performed a prospective study embedded in a cluster randomised controlled trial (cRCT) to evaluate the attrition, fabric integrity and insecticidal durability of Interceptor® G2 (alpha-cypermethrin-chlorfenapyr) and Royal Guard® (alpha-cypermethrin-pyriproxyfen), compared to Interceptor® (alpha-cypermethrin) in Benin. METHODS: A total of 2428 study nets in 1093 randomly selected households in five clusters per arm of the cRCT were monitored for ITN attrition and fabric integrity every 6-12 months post-distribution. Householders were further surveyed to investigate non-study net use and their preference for ITN fabric types used in the study nets. A second cohort of 120 nets per ITN type were withdrawn every 12 months and assessed for chemical content and insecticidal activity in laboratory bioassays. Alpha-cypermethrin bioefficacy was investigated using the susceptible Anopheles gambiae Kisumu strain, and chlorfenapyr and pyriproxyfen bioefficacy were investigated using the pyrethroid-resistant Anopheles coluzzii Akron strain. Net pieces were tested in WHO cone bioassays and tunnel tests for alpha-cypermethrin and in tunnel tests for chlorfenapyr; pyriproxyfen activity was assessed in cone bioassays as the reduction in fertility of blood-fed survivors using ovary dissection. Bioefficacy was expressed as the proportion of ITNs passing predetermined WHO criteria, namely knock-down ≥ 95% or 24/72 h mortality ≥ 80% or reduction in fertility ≥ 50%. RESULTS: Overall ITN survivorship was 52% at 24 months and fell to 15% at 36 months. Median ITN survival time was lower with Royal Guard® relative to Interceptor® [1.6 vs 2.3 years; hazard ratio (HR) 1.49, 95% confidence interval (CI) 1.36-1.66; p < 0.001] and Interceptor® G2 (1.6 vs 2.1 years; HR 1.33, 95% CI 1.20-1.47; p < 0.001). Householders overwhelmingly preferred polyester nets over polyethylene nets (96%), and more Royal Guard® nets were replaced with spare polyester nets from previous campaigns. All Royal Guard® nets passed efficacy criteria for alpha-cypermethrin at all time points (100%) while ITN pass rates after 24 months had fallen to < 40% for pyriproxyfen and chlorfenapyr. The chemical content analysis showed a higher loss rate of the non-pyrethroid insecticides relative to the pyrethroids in each dual ingredient AI ITN; 74% vs 47% for Royal Guard® and 85% vs 63% for Interceptor® G2 at 36 months. CONCLUSIONS: The median ITN survival time for Interceptor® G2 (2.1 years) and Royal Guard® (1.6 years) in Benin is substantially lower than 3 years. Royal Guard® nets were discarded more quickly by householders, partly due to their low preference for polyethylene nets. The insecticidal activity of the non-pyrethroid insecticides in both dual AI ITNs was short-lived compared to alpha-cypermethrin. The results corroborate the findings from the cRCT conducted in Benin.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos , Piretrinas , Piretrinas/farmacologia , Animais , Benin , Inseticidas/farmacologia , Humanos , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Controle de Mosquitos/métodos , Piridinas/farmacologia , Feminino , Estudos Prospectivos , Malária/prevenção & controle , Malária/transmissão
4.
Artigo em Inglês | MEDLINE | ID: mdl-39433467

RESUMO

With the development of electronic technology, triboelectric-based sensors have been widely researched in fields such as healthcare, rehabilitation training, and sports assistance due to their manufacturing convenience and self-powering advantages. Among them, 3D fabric-based triboelectric sensors not only possess advantages such as easy mechanized production, good breathability, and ease of wearing but also their unique 3D structure enhances the specific surface area, thereby amplifying the sensitivity. This study proposes a 3D bristle-structured fabric made by a digital knitting technology that has not been studied widely for triboelectric devices. By applying the 3D bristle structure with a large specific surface area to the single jersey fabric, the effective contact area during friction can be increased, resulting in a higher surface charge density. Additionally, the microcapacitor-like effect provided by the numerous microstructures allows the device to store more surface charge, further improving the output performance. The study systematically investigates the output performance of four different structures assembled by single jersey and 3D bristle-structured fabrics. The optimal sample exhibits a 57% higher output voltage than that of the reference 2D fabric sample. The 3D bristle-structured fabric demonstrates linear high sensitivity and distinct output performance when used as a sensor. Finally, a machine learning integration is applied to judge motion to assist a baseball pitcher in a self-training system.

5.
Sci Rep ; 14(1): 25509, 2024 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461980

RESUMO

The use of natural bioresources in textile dyeing has attracted significant research interest due to their environmentally friendly and low-toxic nature. This study investigated the utilization of waste oyster shell (WOS) as a bio-mordant combined with sappan wood extract to dye silk fabrics using pre-, meta-, and post-mordanting method. The crystal structure of CaCO3 derived from WOS and their impact on color properties, color strength and color fastness were analyzed. The dyed fabrics displayed a range of shades from light pink to deep red and brown. FTIR analysis confirmed chemical interactions among dye, silk, and WOS mordants. Notably, silk treated with WOS at 800 °C as a pre-mordant showed color strength approximately 2.6 times higher than that of un-mordanted samples. Additionally, bio-mordanted samples exhibited improved color fastness compared to untreated ones (rating 2), with pre-mordanting offering the highest resistance to washing (rating 4-5). These findings shed light on the potential of waste oyster shell as an effective, sustainable alternative to conventional metal mordants in textile dyeing. This study not only support the utilization of waste but also enhances environmental and resource efficiency of the dyeing process.


Assuntos
Exoesqueleto , Corantes , Animais , Corantes/química , Exoesqueleto/química , Ostreidae/química , Cor , Têxteis/análise , Carbonato de Cálcio/química , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resíduos/análise
6.
Small ; : e2407571, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39460435

RESUMO

In the face of increasingly variable cold climates and diverse individual temperature regulation demands, personal thermal management (PTM) textiles with electromagnetic shielding have obtained significant attention. However, the PTM textiles face several challenges, including single heating mode, insufficient durability, and complex preparation processes. Herein, an all-day PTM textile Cotton@PDA/AgNPs (CPANS) with energy-free PRH, energy-saving solar heating, compensatory electrical heating, electromagnetic interference (EMI) shielding, and outstanding durability is fabricated by sequentially growing polydopamine (PDA) and silver nanoparticles (AgNPs) on the cotton fabric (CF). The CPANS exhibits low mid-infrared emissivity (36.6%) and high absorptivity (70.8%), which guarantees the energy-saving heating capability. Moreover, the conductivity of the CPANS is ≈11109 S m-1, enabling an electrical heating temperature of ≈177 °C under a low voltage of 1.1 V and superb EMI shielding effectiveness (≈60 dB). The remarkable adhesive properties of the PDA ensure that the desired durability of the CPANS remains high even after rigorous physical treatments. This innovation shows enormous potential for wearable integrated garments in the future and offers a new ideal for PTM fabrics in the cold.

7.
Molecules ; 29(20)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39459205

RESUMO

Due to the increased prevalence of diabetes, the consumption of anti-diabetic drugs for its treatment has likewise increased. Metformin is an anti-diabetic drug that is commonly prescribed for patients with type 2 diabetes and has been frequently detected in surface water and wastewaters, thus representing an emerging contaminant. Metformin can be prescribed in combination with other classes of anti-diabetic drugs; however, these drugs are not sufficiently investigated in environmental samples. Fabric phase sorptive extraction (FPSE) has emerged as a simple and green method for the extraction of analytes in environmental samples. In this study, FPSE coupled with a high-performance liquid chromatography diode array detector (HPLC-DAD) was employed for the simultaneous analysis of different classes of anti-diabetic drugs (metformin, dapagliflozin, liraglutide, pioglitazone, gliclazide, glimepiride, glargine, repaglinide, sitagliptin, and vildagliptin) in environmental water samples. Four different fabric membranes were synthesized but the microfiber glass filter coated with sol-gel polyethylene glycol (PEG 300) was observed to be the best FPSE membrane. The parameters affecting the FPSE process were optimized using a combination of one-factor-at-a-time processes and the design of experiments. The FPSE was evaluated as a green extraction method, based on green sample preparation criteria. The FPSE-HPLC-DAD method achieved acceptable validation results and was applied for the simultaneous analysis of anti-diabetic drugs in surface and wastewater samples. Glimepiride was detected below the quantification limit in both lake and river water samples. Dapagliflozin, liraglutide, and glimepiride were detected at 69.0 ± 1.0 µg·L-1, 71.9 ± 0.4 µg·L-1, and 93.9 ± 1.3 µg·L-1, respectively, in the city wastewater influent. Dapagliflozin and glimepiride were still detected below the quantification limit in city wastewater effluent. For the hospital wastewater influent, metformin and glimepiride were detected at 1158 ± 21 µg·L-1 and 28 ± 0.8 µg·L-1, respectively, while only metformin (392.6 ± 7.7 µg·L-1) was detected in hospital wastewater effluent.


Assuntos
Hipoglicemiantes , Poluentes Químicos da Água , Hipoglicemiantes/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Águas Residuárias/química , Águas Residuárias/análise , Química Verde/métodos , Têxteis/análise , Metformina/análise , Extração em Fase Sólida/métodos
8.
Materials (Basel) ; 17(20)2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39459715

RESUMO

Artificial intelligence (AI) is revolutionizing the textile industry by improving the prediction of fabric properties and handfeel, which are essential for assessing textile quality and performance. However, the practical application and translation of AI-predicted results into real-world textile production remain unclear, posing challenges for widespread adoption. This paper systematically reviews AI-driven techniques for predicting these characteristics by focusing on model mechanisms, dataset diversity, and prediction accuracy. Among 899 papers initially identified, 39 were selected for in-depth analysis through both bibliometric and content analysis. The review categorizes and evaluates various AI approaches, including machine learning, deep learning, and hybrid models, across different types of fabric. Despite significant advances, challenges remain, such as ensuring model generalization and managing complex fabric behavior. Future research should focus on developing more robust models, integrating sustainability, and refining feature extraction techniques. This review highlights the critical gaps in the literature and provides practical insights to enhance AI-driven prediction of fabric properties, thus guiding future textile innovations.

9.
Int J Biol Macromol ; : 136420, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39383911

RESUMO

Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollution. To address these issues, a bioinspired polylactic acid/polyethylene glycol @silicon dioxide (PLA/PEG@SiO2) microfibrous tarpaulin with a dual-layer heterogeneous structure was fabricated via in-situ drafting melt-blowing combined with thermal bonding, inspired by the layered structure of shells. This bioinspired dual-layer heterogeneous structure, with an adjustable heterodyne angle and SiO2 size gradient, significantly improved the mechanical performance of the PLA/PEG@SiO2 microfibrous tarpaulin, and specifically manifested as an increase in the bursting strength of the sample to 25.5 N. Moreover, PLA/PEG@SiO2 microfibrous tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust. Additionally, its radiative cooling efficiency was notably enhanced, achieving a temperature reduction of ~9.8 °C compared with conventional fabrics, with reflectance of ~88.6 % and emissivity of ~98.3 %. These findings suggest that dual-layered PLA/PEG@SiO2 microfibrous tarpaulin with multifunctional capabilities is a promising candidate for radiative cooling in outdoor shelters, wearable cooling devices, and energy-efficient building insulation materials.

10.
Biopolymers ; : e23635, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436024

RESUMO

The development of multifunctional cotton fabrics that are stain-resistant, antimicrobial, and easy to clean has sparked scientific interest as well as practical usefulness, owing to its medical and healthcare applications. The purpose of this study was to fabricate self-cleaning and antimicrobial cotton for final use by soaking the cotton fabric in nonfluorinated hybrid formulations based on quaternary chitosan-silane using the sol-gel process. The fluorine-free cotton fabric demonstrated high self-cleaning behavior and outstanding bacterial killing efficacy against E. coli and S. aureus bacteria, without altering the desired textile properties of cotton fabric. Remarkably, cotton textiles using the hybrid formulations HTACC-VTES (N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride-vinyltriethoxy silane) and TMCC-VTES (N, N, N-trimethyl chitosan chloride-vinyltriethoxy silane) demonstrated promising water contact angles of 147° and 142° respectively, indicating a move toward superhydrophobicity. In FTIR spectra, both treated cotton textiles had an absorption peak at 1208 cm-1 (SiOC bending), indicating a stronger interaction between silane binding agents and the cotton substrate. The treated cotton fabric with desirable features retains its stability and endurance after 12 cycles of washing for antibacterial tests and 15 cycles for wettability tests. The manufactured cotton fabric has several potential applications, such as in personal hygiene items and medical applications.

11.
Small ; : e2408465, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420703

RESUMO

Functional fabric with directional sweat transport and simultaneous sweat detection is highly desirable in daily life due to its crucial role in ensuring exercise comfort and promoting health. Herein, the inspiration is drawn from both the perspiration function of sweat pores and the backflow prevention feature of the surrounding solid skin to develop bioinspired hydrophobic nanofiber fabric. When combined with commercial cotton, this fabric enables rapid discharge of sweat through the sweat pore-like channels at an ultrafast speed of 240 g s-1 m-2, while effectively preventing backflow around these channels to ensure highly efficient personal drying. The performance of the bioinspired nanofiber fabric surpasses that of five commercially available moisture-wicking fabrics by effectively guiding liquid transport while minimizing residual moisture accumulation on the inner side. Furthermore, a colorimetric analysis system is integrated into the bioinspired nanofiber fabric, which facilitates convenient sampling of sweat samples and detection of biomarkers in sweat such as chloride ion, calcium ion, and pH level. This innovative design based on the concept of sweat pores opens up new possibilities for developing intelligent fabrics, electronic skins, and point-of-care devices.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39422650

RESUMO

Whereas cotton as an abundant natural cellulose has been widely used for sustainable and skin-friendly textiles and clothes, developing cotton fabrics with smart functions that could respond to various stimuli is still eagerly desired while remaining a great challenge. Herein, smart multiresponsive cotton fabric with hierarchically copper nanowire interwoven MXene conductive networks that are seamlessly assembled along a 3D woven fabric template for efficient personal healthcare and thermal comfort regulation is successfully developed. The robust hierarchically interwoven conductive network was "glued" and protected by organic conductive polymer poly(3,4-ethylenedioxythiophene) along a 3D interconnected fabric template to enhance interfacial adherent and environmental stability. Benefiting from the robust multiresponsive hierarchically interwoven conductive network, smart cotton fabric exhibits real-time response to various external stimuli (light/electrical/heat/temperature/stress), and the details of human activities can be accurately recognized and monitored. Furthermore, the porous structure of 3D smart fabric induced strong capillary force and confinement to phase change materials PEG, which exhibits a wide range of phase transition temperatures for efficient thermal comfort regulation. After further encapsulation with transparent fluorosilicone resin, the smart cotton fabric exhibits excellent self-cleaning performance with water/oil repellent. The smart multiresponsive cotton fabrics hold great promise in next-generation wearable systems for efficient personal healthcare and thermal management.

13.
J Phys Ther Sci ; 36(10): 633-641, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39354927

RESUMO

[Purpose] The effects of multifunctional garments on neuromuscular performance have gained significant research attention in the health sciences. However, the spinal responses to different fabrics have not yet been considered. In the present study, we examined the effects of typical fabrics (cotton and polyester) on the Hoffmann reflex during local heat exposure. [Participants and Methods] Sixteen healthy males aged 20-40 years participated in this study. A heating device comprising a thermal mat, fabric, and a data logger was fabricated. The fabric was affixed to the skin as the contact surface. The temperature of the right posterior lower leg was increased to 39°C followed by 10 min for adaptation at 39-40°C. The H- and M-waves were recorded at each point, including those without heating. An identical trial was conducted seven days later using the alternative fabric. [Results] M-wave amplitude and latency were significantly decreased during heat exposure without fabric. The H-wave latency was prolonged by sustained thermal heat during the session with polyester. Interestingly, the H-wave amplitudes normalized by the maximal M-wave amplitudes decreased with prolonged heat exposure during the session with cotton. However, this index remains unchanged during the sessions using polyester. [Conclusion] During prolonged localized thermal exposure, cotton reduced spinal excitability, whereas polyester preserved spinal excitability.

14.
Sci Rep ; 14(1): 23347, 2024 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375456

RESUMO

Vascular covered stents play a significant therapeutic role in cardiovascular diseases. However, the poor compliance and biological inertness of commercial materials cause post-implantation complications. Silk fibroin (SF), as a biomaterial, possesses satisfactory hemocompatibility and tissue compatibility. In this study, we developed a silk film for use in covered stents by employing a layer-by-layer self-assembly strategy with regenerated SF on silk braiding fabric. We investigated the effects on the mechanical properties of the silk films in detail, which were closely correlated with fabric parameters and layer-by-layer self-assembly. The results showed that there was a significant relationship between these factors and both the compliance and mechanical strength. The 1 × 2/90°/100/SF6 film exhibited excellent mechanical properties. Notably, compliance reached 2.6%/100 mmHg, matching that of the human saphenous vein. Thus, this strategy shows promise in developing a novel covered stent, with biocompatible and comprehensive mechanical properties, and significant potential for clinical applications.


Assuntos
Fibroínas , Teste de Materiais , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Fibroínas/química , Stents , Seda/química , Materiais Biocompatíveis/química , Animais , Células Endoteliais da Veia Umbilical Humana , Materiais Revestidos Biocompatíveis/química , Bombyx , Prótese Vascular
15.
Artigo em Inglês | MEDLINE | ID: mdl-39405426

RESUMO

Radiative cooling technologies have had a significant impact on advancing carbon neutrality efforts by significantly improving the passive cooling efficiency. The tandem of conduction and radiation enables solar-adaptive radiative cooling through the insulating effect of materials along with solar absorption, which affects the thermal state of materials and enhances radiative thermal transfer from the surface under solar irradiation. This enhancement is achieved by utilizing the porous polymeric structure of materials, which facilitates improved conduction pathways along with solar reflectance, while maintaining the effective emission of thermal radiation. In this particular scenario, blocks, which were made of recycled fibers, offer a great opportunity as solar-adaptive cooling materials, enabling their easy deployment for cooling applications. Herein, we have fabricated a porous block using fiber wastes that combines strong solar reflectance (92%) at the 1 µm region and high thermal infrared emittance (∼75%) at the 10 µm region. The combination of effective solar reflection and thermal infrared emission allows the fiber block to achieve a high cooling performance of approximately 68 W/m2 under solar irradiation. In addition, the fiber block works effectively for insulation during the night, thereby enhancing its heat retention capabilities. The economic and environmental advantages of the fiber block make it a cost-competitive and sustainable choice for near-market cooling technologies. This design is anticipated to expand the practical application range of passive cooling.

16.
ACS Nano ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39428715

RESUMO

Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.

17.
Materials (Basel) ; 17(19)2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39410469

RESUMO

This study explores the intricate interaction between the properties of textile substrates and screen-printing parameters in shaping fabric circuits using silver conductive ink. Via analyzing key variables such as fabric type, mesh density, and the number of overprinted layers, the research revealed how the porous structure, large surface area, and fiber morphology of textile substrates influence ink absorption, ultimately enhancing the electrical connectivity of the printed circuits. Notably, the hydrophilic cotton staple fibers fabric effectively absorbed the conductive ink into the fabric substrate, demonstrating superior electrical performance compared with the hydrophobic polyester filament fabric after three overprinting, unlike the results observed after a single print. As mesh density decreased and the number of prints increased, the electrical resistance of the circuit gradually reduced, but ink bleeding on the fabric surface became more pronounced. Cotton fabric, via absorbing the ink deeply, exhibited less surface bleeding, while polyester fabric showed more noticeable ink spreading. These findings provide valuable insights for improving screen printing technology for textile circuits and contribute to the development of advanced fabric circuits that enhance the functionality of smart wearable technology.

18.
Int J Biol Macromol ; 281(Pt 4): 136595, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414195

RESUMO

In the context of escalating standards of living, the demand for healthy and multifunctional textiles is increasing. As a kind of cellulose macromolecular-based material, lyocell fiber has low carbon, is environmentally friendly, and demonstrates superb performance. The utilization of some Chinese herb dyes solves the pollution problem in the color and functionality construction of lyocell fabric by synthetic dyes and finishing agents. However, problems such as low dye utilization rate, light apparent color, and weak functionality of dyed fabrics remain, thus limiting the further application of the powerful combination of lyocell fabric and Chinese herb dyes. Here, a color and multifunction construction method of lyocell fabric with Coptis chinensis and 1,2,3,4-butanetetracarboxylic acid was proposed. Under the optimal color construction condition, the color depth increased remarkably, and the dye exhaustion rate of the modified fabric enhanced by 332.3 % compared with the unmodified one. The multifunction construction imparted outstanding fuzz and pilling inhibition, fibrillation resistance, and antiwrinkle performance for lyocell fabrics. Moreover, the dyed lyocell fabric exhibited considerable UV protective activity and antibacterial property against Staphylococcus aureus. This work provided an efficient color and multifunction construction technology for lyocell fabric with high value added.

19.
BMC Med Inform Decis Mak ; 24(1): 303, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407229

RESUMO

BACKGROUND: As digital healthcare services handle increasingly more sensitive health data, robust access control methods are required. Especially in emergency conditions, where the patient's health situation is in peril, different healthcare providers associated with critical cases may need to be granted permission to acquire access to Electronic Health Records (EHRs) of patients. The research objective of this work is to develop a proactive access control method that can grant emergency clinicians access to sensitive health data, guaranteeing the integrity and security of the data, and generating trust without the need for a trusted third party. METHODS: A contextual and blockchain-based mechanism is proposed that allows access to sensitive EHRs by applying prognostic procedures where information based on context, is utilized to identify critical situations and grant access to medical data. Specifically, to enable proactivity, Long Short Term Memory (LSTM) Neural Networks (NNs) are applied that utilize patient's recent health history to prognose the next two-hour health metrics values. Fuzzy logic is used to evaluate the severity of the patient's health state. These techniques are incorporated in a private and permissioned Hyperledger-Fabric blockchain network, capable of securing patient's sensitive information in the blockchain network. RESULTS: The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient's well-being. Integrating this predictive mechanism within the blockchain network proved to be a robust tool to enhance the performance of the access control mechanism. Furthermore, the blockchain network of this work can record the history of who and when had access to a specific patient's sensitive EHRs, guaranteeing the integrity and security of the data, as well as recording the latency of this mechanism, where three different access control cases are evaluated. This access control mechanism is to be enforced in a real-life scenario in hospitals. CONCLUSIONS: The proposed mechanism informs proactively the emergency team of professional clinicians about patients' critical situations by combining fuzzy and predictive machine learning techniques incorporated in the private and permissioned blockchain network, and it exploits the distributed data of the blockchain architecture, guaranteeing the integrity and security of the data, and thus, enhancing the users' trust to the access control mechanism.


Assuntos
Blockchain , Segurança Computacional , Registros Eletrônicos de Saúde , Humanos , Segurança Computacional/normas , Redes Neurais de Computação , Confidencialidade/normas , Lógica Fuzzy
20.
Polymers (Basel) ; 16(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408455

RESUMO

Corresponding to marine environmental regulations is important in shipbuilding and marine industries. The application of lightweight composite materials on ships is an effective approach to reducing the emission of greenhouse gases. The mechanical fastening method is a good candidate to assemble composites and conventional metals. The joint geometric and environmental effects are two important factors in mechanically fastened ship and marine structures. In this study, we evaluated the W/D (hole diameter to width ratio) and environmental effects on the bearing strength and failure mode of a mechanically fastened non-crimp fabric (NCF) composite material. To consider the effect of joint geometry, wherein hole diameters of 5, 6, 8, and 10 mm were machined. Further, by selecting three environmental conditions (UV, saltwater and low temperature), we evaluated environmental effects on bearing strength and failure modes of NCF composite specimens. The bearing strength increased as W/D decreased, and the bearing strength of the specimen exposed to low temperature and UV environments increased, while that of the specimen exposed to saltwater remained the same. From the failure mode analysis, the specimen that was exposed to salt fog showed the same failure mode as the unaged specimen. It was observed that the changes in the transition section and new failure mode in the xenon arc and low-temperature specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA