Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin J Am Soc Nephrol ; 15(10): 1497-1510, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646915

RESUMO

Expanded accessibility of genetic sequencing technologies, such as chromosomal microarray and massively parallel sequencing approaches, is changing the management of hereditary kidney diseases. Genetic causes account for a substantial proportion of pediatric kidney disease cases, and with increased utilization of diagnostic genetic testing in nephrology, they are now also detected at appreciable frequencies in adult populations. Establishing a molecular diagnosis can have many potential benefits for patient care, such as guiding treatment, familial testing, and providing deeper insights on the molecular pathogenesis of kidney diseases. Today, with wider clinical use of genetic testing as part of the diagnostic evaluation, nephrologists have the challenging task of selecting the most suitable genetic test for each patient, and then applying the results into the appropriate clinical contexts. This review is intended to familiarize nephrologists with the various technical, logistical, and ethical considerations accompanying the increasing utilization of genetic testing in nephrology care.


Assuntos
Testes Genéticos , Nefropatias/diagnóstico , Nefropatias/genética , Análise de Sequência de DNA , Adulto , Ensaios Clínicos como Assunto , Hibridização Genômica Comparativa , Exoma , Testes Genéticos/ética , Testes Genéticos/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nefropatias/terapia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético
2.
Clin J Am Soc Nephrol ; 15(5): 651-664, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32299846

RESUMO

BACKGROUND AND OBJECTIVES: Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings. RESULTS: Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients' nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals. CONCLUSIONS: Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3.


Assuntos
Aconselhamento Genético , Testes Genéticos , Nefropatias/genética , Nefrologia , Adolescente , Adulto , Bancos de Espécimes Biológicos , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Hereditariedade , Humanos , Lactente , Recém-Nascido , Nefropatias/diagnóstico , Nefropatias/terapia , Masculino , Pessoa de Meia-Idade , Equipe de Assistência ao Paciente , Linhagem , Fenótipo , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Encaminhamento e Consulta , Estudos Retrospectivos , Sequenciamento do Exoma , Fluxo de Trabalho , Adulto Jovem
3.
Nephrol Dial Transplant ; 35(3): 390-397, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30809662

RESUMO

A large fraction of early-onset chronic kidney disease (CKD) is known to be monogenic in origin. To date, ∼450 monogenic (synonymous with single-gene disorders) genes, if mutated, are known to cause CKD, explaining ∼30% of cases in pediatric cohorts and ∼5-30% in adult cohorts. However, there are likely hundreds of additional monogenic nephropathy genes that may be revealed by whole-exome or -genome sequencing. Although the discovery of novel CKD-causing genes has accelerated, significant challenges in adult populations remain due to broad phenotypic heterogeneity together with variable expressivity, incomplete penetrance or age-related penetrance of these genes. Here we give an overview of the currently known monogenic causes for human CKD. We also describe how next-generation sequencing facilitates rapid molecular genetic diagnostics in individuals with suspected genetic kidney disease. In an era of precision medicine, understanding the utility of genetic testing in individuals with a suspected inherited nephropathy has important diagnostic and prognostic implications. Detection of monogenic causes of CKD permits molecular genetic diagnosis for patients and families and opens avenues for personalized treatment strategies for CKD. As an example, detection of a pathogenic mutation in the gene HNF1B not only allows for the formal diagnosis of CKD, but can also facilitate screening for additional extrarenal manifestations of disease, such as maturity-onset diabetes of youth, subclinical abnormal liver function tests, neonatal cholestasis and pancreatic hypoplasia. It also provides the driving force towards a better understanding of disease pathogenesis, potentially facilitating targeted new therapies for individuals with CKD.


Assuntos
Marcadores Genéticos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Medicina de Precisão , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Humanos , Prognóstico
4.
Kidney360 ; 1(10): 1099-1106, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35368791

RESUMO

Background: Genetic testing in nephrology is increasingly described in the literature and several groups have suggested significant clinical benefit. However, studies to date have described experience from established genetic testing centers or from externally funded research programs. Methods: We established a de novo kidney genetics clinic within an academic adult general nephrology practice. Key features of this effort included a pipeline for internal referrals, flexible scheduling, close coordination between the nephrologist and a genetic counselor, and utilization of commercial panel-based testing. Over the first year, we examined the outcomes of genetic testing, the time to return of genetic testing, and out-of-pocket cost to patients. Results: Thirty patients were referred and 23 were evaluated over the course of five clinic sessions. Nineteen patients underwent genetic testing with new diagnoses in nine patients (47%), inconclusive results in three patients (16%), and clearance for kidney donation in two patients (11%). On average, return of genetic results occurred 55 days (range 9-174 days) from the day of sample submission and the average out-of-pocket cost to patients was $155 (range $0-$1623). Conclusions: We established a kidney genetics clinic, without a pre-existing genetics infrastructure or dedicated research funding, that identified a new diagnosis in approximately 50% of patients tested. This study provides a clinical practice model for successfully incorporating genetic testing into ambulatory nephrology care with minimal capital investment and limited financial effect on patients.


Assuntos
Nefrologia , Pacientes Ambulatoriais , Adulto , Instituições de Assistência Ambulatorial , Testes Genéticos , Humanos , Rim
5.
J Am Soc Nephrol ; 28(10): 3118-3128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28674042

RESUMO

Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.


Assuntos
Alcalose/genética , Claudinas/genética , Hipopotassemia/genética , Erros Inatos do Transporte Tubular Renal/genética , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
6.
J Am Soc Nephrol ; 28(5): 1614-1621, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27932480

RESUMO

Steroid-resistant nephrotic syndrome (SRNS), a heterogeneous disorder of the renal glomerular filtration barrier, results in impairment of glomerular permselectivity. Inheritance of genetic SRNS may be autosomal dominant or recessive, with a subset of autosomal recessive SRNS presenting as congenital nephrotic syndrome (CNS). Mutations in 53 genes are associated with human SRNS, but these mutations explain ≤30% of patients with hereditary cases and only 20% of patients with sporadic cases. The proteins encoded by these genes are expressed in podocytes, and malfunction of these proteins leads to a universal end point of podocyte injury, glomerular filtration barrier disruption, and SRNS. Here, we identified novel disease-causing mutations in membrane-associated guanylate kinase, WW, and PDZ domain-containing 2 (MAGI2) through whole-exome sequencing of a deeply phenotyped cohort of patients with congenital, childhood-onset SRNS. Although MAGI2 has been shown to interact with nephrin and regulate podocyte cytoskeleton and slit diaphragm dynamics, MAGI2 mutations have not been described in human SRNS. We detected two unique frameshift mutations and one duplication in three patients (two families); two siblings shared the same homozygous frameshift mutation, whereas one individual with sporadic SRNS exhibited compound heterozygosity. Two mutations were predicted to introduce premature stop codons, and one was predicted to result in read through of the normal translational termination codon. Immunohistochemistry in kidney sections from these patients revealed that mutations resulted in lack of or diminished podocyte MAGI2 expression. Our data support the finding that mutations in the MAGI2 gene are causal for congenital SRNS.


Assuntos
Proteínas de Transporte/genética , Mutação , Síndrome Nefrótica/congênito , Proteínas Adaptadoras de Transdução de Sinal , Feminino , Guanilato Quinases , Humanos , Lactente , Masculino , Síndrome Nefrótica/genética
7.
Nephrol Dial Transplant ; 31(11): 1908-1914, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27190376

RESUMO

BACKGROUND: Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. METHODS: We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. RESULTS: We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. CONCLUSIONS: Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans.


Assuntos
Colágeno Tipo IV/genética , DNA/genética , Mutação da Fase de Leitura , Nefrite Hereditária/genética , Colágeno Tipo IV/metabolismo , Análise Mutacional de DNA , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Nefrite Hereditária/metabolismo , Linhagem , Reação em Cadeia da Polimerase
8.
J Am Soc Nephrol ; 27(5): 1426-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26376857

RESUMO

A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.


Assuntos
Glicina/análogos & derivados , Transportadores de Ácidos Monocarboxílicos/genética , Mutação , Adulto , Idoso , Feminino , Glicina/metabolismo , Glicosúria/genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
9.
J Am Soc Nephrol ; 27(1): 63-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25967120

RESUMO

Hereditary defects of coenzyme Q10 biosynthesis cause steroid-resistant nephrotic syndrome (SRNS) as part of multiorgan involvement but may also contribute to isolated SRNS. Here, we report 26 patients from 12 families with recessive mutations in ADCK4. Mutation detection rate was 1.9% among 534 consecutively screened cases. Patients with ADCK4 mutations showed a largely renal-limited phenotype, with three subjects exhibiting occasional seizures, one subject exhibiting mild mental retardation, and one subject exhibiting retinitis pigmentosa. ADCK4 nephropathy presented during adolescence (median age, 14.1 years) with nephrotic-range proteinuria in 44% of patients and advanced CKD in 46% of patients at time of diagnosis. Renal biopsy specimens uniformly showed FSGS. Whereas 47% and 36% of patients with mutations in WT1 and NPHS2, respectively, progressed to ESRD before 10 years of age, ESRD occurred almost exclusively in the second decade of life in ADCK4 nephropathy. However, CKD progressed much faster during adolescence in ADCK4 than in WT1 and NPHS2 nephropathy, resulting in similar cumulative ESRD rates (>85% for each disorder) in the third decade of life. In conclusion, ADCK4-related glomerulopathy is an important novel differential diagnosis in adolescents with SRNS/FSGS and/or CKD of unknown origin.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Mutação , Proteínas Quinases/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Humanos , Lactente
10.
CEN Case Rep ; 4(1): 85-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-28509277

RESUMO

Collagenofibrotic glomerulopathy is a rare glomerular disease characterized by extensive accumulation of atypical type III collagen fibers within the mesangial matrix and subendothelial space. Laboratory evaluation of this disease shows a marked increase in serum procollagen III peptide (P III P) levels. Here, we report the case of two brothers with collagenofibrotic glomerulopathy confirmed by histology. Patient 1 presented with proteinuria and hypertension and patient 2 presented with nephrotic-range proteinuria. Immunohistochemistry revealed strong staining for antibodies to type III collagen in the widened subendothelial spaces in both patients. Electron microscopy revealed numerous collagenous fibers in the mesangium and subendothelial space. P III P levels were elevated in both patients. Most reported cases of collagenofibrotic glomerulopathy, including the adult-onset type, have been sporadic. Within the limits of our literature search, this is only the third report of adult siblings with collagenofibrotic glomerulopathy confirmed by histology. This report indicates that it may be beneficial to measure serum P III P levels in the siblings of patients diagnosed with adult-onset collagenofibrotic glomerulopathy.

11.
J Am Soc Nephrol ; 25(8): 1653-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24610927

RESUMO

Nephronophthisis (NPHP) is one of the most common genetic causes of CKD; however, the underlying genetic abnormalities have been established in <50% of patients. We performed genome-wide analysis followed by targeted resequencing in a Turkish consanguineous multiplex family and identified a canonic splice site mutation in ANKS6 associated with an NPHP-like phenotype. Furthermore, we identified four additional ANKS6 variants in a cohort of 56 unrelated patients diagnosed with CKD due to nephronophthisis, chronic GN, interstitial nephritis, or unknown etiology. Immunohistochemistry in human embryonic kidney tissue demonstrated that the expression patterns of ANKS6 change substantially during development. Furthermore, we detected increased levels of both total and active ß-catenin in precystic tubuli in Han:SPRD Cy/+ rats. Overall, these data indicate the importance of ANKS6 in human kidney development and suggest a mechanism by which mutations in ANKS6 may contribute to an NPHP-like phenotype in humans.


Assuntos
Doenças Renais Císticas/genética , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Mutação/genética , Proteínas Nucleares/genética , Fenótipo , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Lactente , Doenças Renais Císticas/complicações , Doenças Renais Císticas/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA