Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 532, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981715

RESUMO

BACKGROUND: The very-long-chain fatty acid elongase (ELOVL) family plays essential roles in lipid metabolism and cellular functions. This comprehensive review explores the structural characteristics, functional properties, and physiological significance of individual ELOVL isoforms, providing insights into lipid biosynthesis, cell membrane dynamics, and signaling pathways. AIM OF REVIEW: This review aims to highlight the significance of the ELOVL family in normal physiology and disease development. By synthesizing current knowledge, we underscore the relevance of ELOVLs as potential therapeutic targets. KEY SCIENTIFIC CONCEPTS OF REVIEW: We emphasize the association between dysregulated ELOVL expression and diseases, including metabolic disorders, skin diseases, neurodegenerative conditions, and cancer. The intricate involvement of ELOVLs in cancer biology, from tumor initiation to metastasis, highlights their potential as targets for anticancer therapies. Additionally, we discuss the prospects of using isoform-specific inhibitors and activators for metabolic disorders and cancer treatment. The identification of ELOVL-based biomarkers may advance diagnostics and personalized medicine. CONCLUSION: The ELOVL family's multifaceted roles in lipid metabolism and cellular physiology underscore its importance in health and disease. Understanding their functions offers potential therapeutic avenues and personalized treatments.


Assuntos
Conhecimento , Doenças Metabólicas , Humanos , Elongases de Ácidos Graxos/genética , Membrana Celular
2.
Pestic Biochem Physiol ; 182: 105038, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249656

RESUMO

Echinochloa crus-galli L., a notorious weed in rice paddy fields, is usually kept under control by mefenacet application at the pre-emergence or early post-emergence stage. Due to continuous and repeated usage, E. crus-galli is developing resistance to mefenacet in China. Two putative resistant and one susceptible E. crus-galli populations were collected from paddy fields in Jiangsu Province to characterize their herbicide resistance. Compared with the susceptible population, the two mefenacet-resistant populations had 2.8- and 4.1-times greater pre-emergence resistance, and 10- and 6.8-times greater early post-emergence resistance to mefenacet. These mefenacet-resistant E. crus-galli populations also exhibited cross- or multiple-resistance to acetochlor, pyraclonil, imazamox, and quinclorac. However, when the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) was applied prior to post-emergence treatment, mefenacet resistance levels were reduced in both populations. Additionally, GST activity in vivo in one resistant population was much higher than the susceptible population after mefenacet application. The very long chain fatty acid elongases (VLCFAEs) from both mefenacet-resistant populations required much higher mefenacet concentration to inhibit their activity. The reduced sensitivity of VLCFAEs to mefenacet indicates the presence of a target-site resistance mechanism and induction of high GST activity may provide additional contribution to E. crus-galli mefenacet resistance through a non-target-site mechanism.


Assuntos
Echinochloa , Herbicidas , Acetanilidas , Benzotiazóis , Resistência a Herbicidas , Herbicidas/farmacologia
3.
Metab Syndr Relat Disord ; 19(7): 386-392, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33983851

RESUMO

Background: Dysregulation of fatty acids (FA) seems to participate in the pathogenesis of disorders such as metabolic syndrome (MetS), cardiovascular diseases, or some cancers. Activities of enzymes FA desaturases and elongases [elongation of very long-chain fatty acid (ELOVL)] significantly influence FA profile in different body compartments. Although the impact of activities of desaturases on cardiometabolic diseases was broadly studied, relatively little attention was devoted to the role of elongases. Methods: Case-control study was carried out in 36 patients (18 men/18 women) with impaired fasting glycemia (IFG) without MetS and 36 age and gender-matched healthy controls. FA profiles in plasma phospholipids (PL) were assessed using gas chromatograph-flame ionization detector and indices of desaturase and elongase activities were calculated. Results: In the IFG group, we observed decreased estimated activities of ELOVL2 and ELOVL5, whereas higher estimated activities of elongase ELOVL6 were noted. IFG group was also characterized by altered composition of plasma PL FA, above all by lower percentage of cis-vaccenic acid (cVA; 18:1n-7) and of total polyunsaturated FA n-6, especially linoleic acid, and by higher proportion of stearic acid and gamma-linolenic acid. Concurrently, elevated estimated activities of desaturases delta-9-desaturase (D9D), D6D were found. Conclusions: Lower estimated activities of ELOVL2 and ELOVL5 with lowered proportion of PL cVA could be associated with disturbances of glucose homeostasis development and their corresponding indices could serve as biomarkers of such risk.


Assuntos
Glicemia , Jejum , Elongases de Ácidos Graxos , Glicemia/análise , Estudos de Casos e Controles , Jejum/sangue , Elongases de Ácidos Graxos/sangue , Feminino , Humanos , Masculino , Síndrome Metabólica/epidemiologia
4.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947752

RESUMO

Stress and virus infection regulate lipid metabolism. Human cytomegalovirus (HCMV) infection induces fatty acid (FA) elongation and increases the abundance of lipids with very-long-chain FA (VLCFA) tails. While reprogramming of metabolism can be stress related, the role of stress in HCMV reprogramming of lipid metabolism is poorly understood. In this study, we engineered cells to knock out protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) in the ER stress pathway and measured lipid changes using lipidomics to determine if PERK is needed for lipid changes associated with HCMV infection. In HCMV-infected cells, PERK promotes increases in the levels of phospholipids with saturated FA (SFA) and monounsaturated FA (MUFA) VLCFA tails. Further, PERK enhances FA elongase 7 (ELOVL7) protein levels, which elongates SFA and MUFA VLCFAs. Additionally, we found that increases in the elongation of polyunsaturated fatty acids (PUFAs) associated with HCMV infection were independent of PERK and that lipids with PUFA tails accumulated in HCMV-infected PERK knockout cells. Additionally, the protein levels of ELOVL5, which elongates PUFAs, are increased by HCMV infection through a PERK-independent mechanism. These observations show that PERK differentially regulates ELOVL7 and ELOVL5, creating a balance between the synthesis of lipids with SFA/MUFA tails and PUFA tails. Additionally, we found that PERK was necessary for virus replication and the infectivity of released viral progeny. Overall, our findings indicate that PERK-and, more broadly, ER stress-may be necessary for the membrane biogenesis needed to generate infectious HCMV virions.IMPORTANCE HCMV is a common herpesvirus that establishes lifelong persistent infections. While infection is asymptomatic in most people, HCMV causes life-threatening illnesses in immunocompromised people, including transplant recipients and cancer patients. Additionally, HCMV infection is a leading cause of congenital disabilities. HCMV replication relies on lipid synthesis. Here, we demonstrated that the ER stress mediator PERK controls FA elongation and the cellular abundance of several types of lipids following HCMV infection. Specifically, PERK promotes FA elongase 7 synthesis and phospholipids with saturated/monounsaturated very-long-chain FA tails. Overall, our study shows that PERK is an essential host factor that supports HCMV replication and promotes lipidome changes caused by HCMV infection.


Assuntos
Citomegalovirus/genética , Citomegalovirus/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Interações entre Hospedeiro e Microrganismos , Metabolismo dos Lipídeos , Células Cultivadas , Estresse do Retículo Endoplasmático , Fibroblastos/virologia , Humanos , Replicação Viral/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885363

RESUMO

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Assuntos
Hepacivirus/metabolismo , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos/genética , Metaboloma , Vírion/metabolismo , Replicação Viral/fisiologia , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Acetiltransferases/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/química , Hepatócitos/virologia , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Microssomos/metabolismo , Microssomos/virologia , Ácido Oleico/metabolismo , Fosfatidilcolinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Triglicerídeos/metabolismo , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia
6.
J Lipid Res ; 57(11): 1995-2004, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613800

RESUMO

In mammals, because they share a single synthetic pathway, n-6/n-3 ratios of dietary PUFAs impact tissue arachidonic acid (ARA) and DHA content. Likewise, SNPs in the human fatty acid desaturase (FADS) gene cluster impact tissue ARA and DHA. Here we tested the feasibility of using heterozygous Fads2-null-mice (HET) as an animal model of human FADS polymorphisms. WT and HET mice were fed diets with linoleate/α-linolenate ratios of 1:1, 7:1, and 44:1 at 7% of diet. In WT liver, ARA and DHA in phospholipids varied >2× among dietary groups, reflecting precursor ratios. Unexpectedly, ARA content was only <10% lower in HET than in WT livers, when fed the 44:1 diet, likely due to increased Fads1 mRNA in response to reduced Fads2 mRNA in HET. Consistent with the RNA data, C20:3n-6, which is elevated in minor FADS haplotypes in humans, was lower in HET than WT. Diet and genotype had little effect on brain PUFAs even though brain Fads2 mRNA was low in HET. No differences in cytokine mRNA were found among groups under unstimulated conditions. In conclusion, differential PUFA profiles between HET mice and human FADS SNPs suggest low expression of both FADS1 and 2 genes in human minor haplotypes.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Animais , Ácido Araquidônico , Dessaturase de Ácido Graxo Delta-5 , Dieta , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Ômega-3/metabolismo , Genótipo , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese
7.
Genes Nutr ; 10(6): 39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386841

RESUMO

We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose-liver-brain axis in n-3 PUFA metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA