Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 24: 136-145, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434250

RESUMO

Objective: This paper introduces a privacy-preserving federated machine learning (ML) architecture built upon Findable, Accessible, Interoperable, and Reusable (FAIR) health data. It aims to devise an architecture for executing classification algorithms in a federated manner, enabling collaborative model-building among health data owners without sharing their datasets. Materials and methods: Utilizing an agent-based architecture, a privacy-preserving federated ML algorithm was developed to create a global predictive model from various local models. This involved formally defining the algorithm in two steps: data preparation and federated model training on FAIR health data and constructing the architecture with multiple components facilitating algorithm execution. The solution was validated by five healthcare organizations using their specific health datasets. Results: Five organizations transformed their datasets into Health Level 7 Fast Healthcare Interoperability Resources via a common FAIRification workflow and software set, thereby generating FAIR datasets. Each organization deployed a Federated ML Agent within its secure network, connected to a cloud-based Federated ML Manager. System testing was conducted on a use case aiming to predict 30-day readmission risk for chronic obstructive pulmonary disease patients and the federated model achieved an accuracy rate of 87%. Discussion: The paper demonstrated a practical application of privacy-preserving federated ML among five distinct healthcare entities, highlighting the value of FAIR health data in machine learning when utilized in a federated manner that ensures privacy protection without sharing data. Conclusion: This solution effectively leverages FAIR datasets from multiple healthcare organizations for federated ML while safeguarding sensitive health datasets, meeting legislative privacy and security requirements.

2.
Healthcare (Basel) ; 11(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685411

RESUMO

Data-driven machine learning in medical research and diagnostics needs large-scale datasets curated by clinical experts. The generation of large datasets can be challenging in terms of resource consumption and time effort, while generalizability and validation of the developed models significantly benefit from variety in data sources. Training algorithms on smaller decentralized datasets through federated learning can reduce effort, but require the implementation of a specific and ambitious infrastructure to share data, algorithms and computing time. Additionally, it offers the opportunity of maintaining and keeping the data locally. Thus, data safety issues can be avoided because patient data must not be shared. Machine learning models are trained on local data by sharing the model and through an established network. In addition to commercial applications, there are also numerous academic and customized implementations of network infrastructures available. The configuration of these networks primarily differs, yet adheres to a standard framework composed of fundamental components. In this technical note, we propose basic infrastructure requirements for data governance, data science workflows, and local node set-up, and report on the advantages and experienced pitfalls in implementing the local infrastructure with the German Radiological Cooperative Network initiative as the use case example. We show how the infrastructure can be built upon some base components to reflect the needs of a federated learning network and how they can be implemented considering both local and global network requirements. After analyzing the deployment process in different settings and scenarios, we recommend integrating the local node into an existing clinical IT infrastructure. This approach offers benefits in terms of maintenance and deployment effort compared to external integration in a separate environment (e.g., the radiology department). This proposed groundwork can be taken as an exemplary development guideline for future applications of federated learning networks in clinical and scientific environments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37047992

RESUMO

Patient-centered health care information systems (PHSs) on peer-to-peer (P2P) networks (e.g., decentralized personal health records) enable storing data locally at the edge to enhance data sovereignty and resilience to single points of failure. Nonetheless, these systems raise concerns on trust and adoption in medical workflow due to non-alignment to current health care processes and stakeholders' needs. The distributed nature of the data makes it more challenging to train and deploy machine learning models (using traditional methods) at the edge, for instance, for disease prediction. Federated learning (FL) has been proposed as a possible solution to these limitations. However, the P2P PHS architecture challenges current FL solutions because they use centralized engines (or random entities that could pose privacy concerns) for model update aggregation. Consequently, we propose a novel conceptual FL framework, CareNetFL, that is suitable for P2P PHS multi-tier and hybrid architecture and leverages existing trust structures in health care systems to ensure scalability, trust, and security. Entrusted parties (practitioners' nodes) are used in CareNetFL to aggregate local model updates in the network hierarchy for their patients instead of random entities that could actively become malicious. Involving practitioners in their patients' FL model training increases trust and eases access to medical data. The proposed concepts mitigate communication latency and improve FL performance through patient-practitioner clustering, reducing skewed and imbalanced data distributions and system heterogeneity challenges of FL at the edge. The framework also ensures end-to-end security and accountability through leveraging identity-based systems and privacy-preserving techniques that only guarantee security during training.


Assuntos
Comunicação , Confiança , Humanos , Análise por Conglomerados , Formação de Conceito , Atenção à Saúde
4.
Orthod Craniofac Res ; 26 Suppl 1: 118-123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37036565

RESUMO

There is a paucity of largescale collaborative initiatives in orthodontics and craniofacial health. Such nationally representative projects would yield findings that are generalizable. The lack of large-scale collaborative initiatives in the field of orthodontics creates a deficiency in study outcomes that can be applied to the population at large. The objective of this study is to provide a narrative review of potential applications of blockchain technology and federated machine learning to improve collaborative care. We conducted a narrative review of articles published from 2018 to 2023 to provide a high level overview of blockchain technology, federated machine learning, remote monitoring, and genomics and how they can be leveraged together to establish a patient centered model of care. To strengthen the empirical framework for clinical decision making in healthcare, we suggest use of blockchain technology and integrating it with federated machine learning. There are several challenges to adoption of these technologies in the current healthcare ecosystem. Nevertheless, this may be an ideal time to explore how best we can integrate these technologies to deliver high quality personalized care. This article provides an overview of blockchain technology and federated machine learning and how they can be leveraged to initiate collaborative projects that will have the patient at the center of care.


Assuntos
Blockchain , Aprendizado de Máquina , Ortodontia , Humanos , Genômica , Tecnologia
5.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850717

RESUMO

Machine learning (ML) has succeeded in improving our daily routines by enabling automation and improved decision making in a variety of industries such as healthcare, finance, and transportation, resulting in increased efficiency and production. However, the development and widespread use of this technology has been significantly hampered by concerns about data privacy, confidentiality, and sensitivity, particularly in healthcare and finance. The "data hunger" of ML describes how additional data can increase performance and accuracy, which is why this question arises. Federated learning (FL) has emerged as a technology that helps solve the privacy problem by eliminating the need to send data to a primary server and collect it where it is processed and the model is trained. To maintain privacy and improve model performance, FL shares parameters rather than data during training, in contrast to the typical ML practice of sending user data during model development. Although FL is still in its infancy, there are already applications in various industries such as healthcare, finance, transportation, and others. In addition, 32% of companies have implemented or plan to implement federated learning in the next 12-24 months, according to the latest figures from KPMG, which forecasts an increase in investment in this area from USD 107 million in 2020 to USD 538 million in 2025. In this context, this article reviews federated learning, describes it technically, differentiates it from other technologies, and discusses current FL aggregation algorithms. It also discusses the use of FL in the diagnosis of cardiovascular disease, diabetes, and cancer. Finally, the problems hindering progress in this area and future strategies to overcome these limitations are discussed in detail.


Assuntos
Algoritmos , Doenças Cardiovasculares , Humanos , Automação , Indústrias , Aprendizado de Máquina
6.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146134

RESUMO

Resource constraint Consumer Internet of Things (CIoT) is controlled through gateway devices (e.g., smartphones, computers, etc.) that are connected to Mobile Edge Computing (MEC) servers or cloud regulated by a third party. Recently Machine Learning (ML) has been widely used in automation, consumer behavior analysis, device quality upgradation, etc. Typical ML predicts by analyzing customers' raw data in a centralized system which raises the security and privacy issues such as data leakage, privacy violation, single point of failure, etc. To overcome the problems, Federated Learning (FL) developed an initial solution to ensure services without sharing personal data. In FL, a centralized aggregator collaborates and makes an average for a global model used for the next round of training. However, the centralized aggregator raised the same issues, such as a single point of control leaking the updated model and interrupting the entire process. Additionally, research claims data can be retrieved from model parameters. Beyond that, since the Gateway (GW) device has full access to the raw data, it can also threaten the entire ecosystem. This research contributes a blockchain-controlled, edge intelligence federated learning framework for a distributed learning platform for CIoT. The federated learning platform allows collaborative learning with users' shared data, and the blockchain network replaces the centralized aggregator and ensures secure participation of gateway devices in the ecosystem. Furthermore, blockchain is trustless, immutable, and anonymous, encouraging CIoT end users to participate. We evaluated the framework and federated learning outcomes using the well-known Stanford Cars dataset. Experimental results prove the effectiveness of the proposed framework.


Assuntos
Blockchain , Internet das Coisas , Segurança Computacional , Ecossistema , Privacidade
7.
J Integr Bioinform ; 19(4)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054833

RESUMO

The implementation of Artificial Intelligence (AI) still faces significant hurdles and one key factor is the access to data. One approach that could support that is federated machine learning (FL) since it allows for privacy preserving data access. For this proof of concept, a prediction model for coronary artery calcification scores (CACS) has been applied. The FL was trained based on the data in the different institutions, while the centralized machine learning model was trained on one allocation of data. Both algorithms predict patients with risk scores ≥5 based on age, biological sex, waist circumference, dyslipidemia and HbA1c. The centralized model yields a sensitivity of c. 66% and a specificity of c. 70%. The FL slightly outperforms that with a sensitivity of 67% while slightly underperforming it with a specificity of 69%. It could be demonstrated that CACS prediction is feasible via both, a centralized and an FL approach, and that both show very comparable accuracy. In order to increase accuracy, additional and a higher volume of patient data is required and for that FL is utterly necessary. The developed "CACulator" serves as proof of concept, is available as research tool and shall support future research to facilitate AI implementation.


Assuntos
Inteligência Artificial , Vasos Coronários , Humanos , Estudo de Prova de Conceito , Aprendizado de Máquina , Atenção à Saúde
8.
J Biomed Inform ; 134: 104151, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872264

RESUMO

BACKGROUND: A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose. OBJECTIVES: Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study. METHODS: We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements. RESULTS: Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims. CONCLUSION: Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.


Assuntos
Atenção à Saúde , Aprendizado de Máquina , Humanos , Inteligência , Privacidade , Curva ROC
9.
Sensors (Basel) ; 22(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35062645

RESUMO

As promising privacy-preserving machine learning technology, federated learning enables multiple clients to train the joint global model via sharing model parameters. However, inefficiency and vulnerability to poisoning attacks significantly reduce federated learning performance. To solve the aforementioned issues, we propose a dynamic asynchronous anti poisoning federated deep learning framework to pursue both efficiency and security. This paper proposes a lightweight dynamic asynchronous algorithm considering the averaging frequency control and parameter selection for federated learning to speed up model averaging and improve efficiency, which enables federated learning to adaptively remove the stragglers with low computing power, bad channel conditions, or anomalous parameters. In addition, a novel local reliability mutual evaluation mechanism is presented to enhance the security of poisoning attacks, which enables federated learning to detect the anomalous parameter of poisoning attacks and adjust the weight proportion of in model aggregation based on evaluation score. The experiment results on three datasets illustrate that our design can reduce the training time by 30% and is robust to the representative poisoning attacks significantly, confirming the applicability of our scheme.


Assuntos
Blockchain , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Privacidade , Reprodutibilidade dos Testes
10.
J Cheminform ; 13(1): 96, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876230

RESUMO

With the increase in applications of machine learning methods in drug design and related fields, the challenge of designing sound test sets becomes more and more prominent. The goal of this challenge is to have a realistic split of chemical structures (compounds) between training, validation and test set such that the performance on the test set is meaningful to infer the performance in a prospective application. This challenge is by its own very interesting and relevant, but is even more complex in a federated machine learning approach where multiple partners jointly train a model under privacy-preserving conditions where chemical structures must not be shared between the different participating parties. In this work we discuss three methods which provide a splitting of a data set and are applicable in a federated privacy-preserving setting, namely: a. locality-sensitive hashing (LSH), b. sphere exclusion clustering, c. scaffold-based binning (scaffold network). For evaluation of these splitting methods we consider the following quality criteria (compared to random splitting): bias in prediction performance, classification label and data imbalance, similarity distance between the test and training set compounds. The main findings of the paper are a. both sphere exclusion clustering and scaffold-based binning result in high quality splitting of the data sets, b. in terms of compute costs sphere exclusion clustering is very expensive in the case of federated privacy-preserving setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA