Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Agric Food Chem ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356107

RESUMO

The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of Nicotiana benthamiana as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin. Our results revealed the expression of a standalone creatine module resulted in the production of 2.3 µg/g fresh weight of creatine in N. benthamiana leaves. Integrating two modules significantly carnosine yield increased by 3.8-fold and minimized the impact on plant amino acid metabolism compared to individual module application. Unexpectedly, introducing the taurine module caused a feedback-like inhibition of plant cysteine biosynthesis, revealing complex metabolic adjustments that can occur when introducing foreign pathways. Our findings underline the potential for employing plants as biofactories for the sustainable production of essential nutrients of animal origin.

2.
Int J Mol Sci ; 25(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39456824

RESUMO

Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Transtornos do Neurodesenvolvimento , Transdução de Sinais , Humanos , Animais , Transtornos do Neurodesenvolvimento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases
3.
ACS Synth Biol ; 13(10): 3446-3460, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39383016

RESUMO

l-Threonine, an essential amino acid, is widely used in various industries, with an annually growing demand. However, the present Corynebacterium glutamicum strains are difficult to achieve industrialization of l-threonine due to low yield and purity. In this study, we engineered an l-isoleucine-producing C. glutamicum WM001 to efficiently produce l-threonine by finely regulating the carbon flux. First, the threonine dehydratase in WM001 was mutated to lower the level of l-isoleucine production, then the homoserine dehydrogenase and aspartate kinase were mutated to release the feedback inhibition of l-threonine, and the resulting strain TWZ006 produced 14.2 g/L l-threonine. Subsequently, aspartate ammonia-lyase and aspartate transaminase were overexpressed to accumulate the precursor l-aspartate. Next, phosphoenolpyruvate carboxylase, pyruvate carboxylase and pyruvate kinase were overexpressed, and phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase were inactivated to fine-regulate the carbon flux among oxaloacetate, pyruvate and phosphoenolpyruvate. The resulting strain TWZ017 produced 21.5 g/L l-threonine. Finally, dihydrodipicolinate synthase was mutated with strong allosteric inhibition from l-lysine to significantly decrease byproducts accumulation, l-threonine export was optimized, and the final engineered strain TWZ024/pXTuf-thrE produced 78.3 g/L of l-threonine with the yield of 0.33 g/g glucose and the productivity of 0.82 g/L/h in a 7 L bioreactor. To the best of our knowledge, this represents the highest l-threonine production in C. glutamicum, providing possibilities for industrial-scale production.


Assuntos
Corynebacterium glutamicum , Isoleucina , Engenharia Metabólica , Treonina Desidratase , Treonina , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Isoleucina/metabolismo , Treonina/metabolismo , Engenharia Metabólica/métodos , Treonina Desidratase/metabolismo , Treonina Desidratase/genética , Aspartato Quinase/metabolismo , Aspartato Quinase/genética , Homosserina Desidrogenase/metabolismo , Homosserina Desidrogenase/genética , Ciclo do Carbono/genética
4.
J Pak Med Assoc ; 74(10): 1881-1883, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39407388

RESUMO

Endocrinology is an ever-evolving almanac of science. Precise measurement of hormones and associated analytes are necessary to practice endocrine medicine. As the endocrine system depends upon feedback and crosstalk between various glands and hormones, it makes sense to assess ratios or proportions of related hormones. We review the ratiocination, or rationale, of ratios which have diagnostic and therapeutic utility in endocrine praxis.


Assuntos
Doenças do Sistema Endócrino , Humanos , Doenças do Sistema Endócrino/diagnóstico , Doenças do Sistema Endócrino/terapia , Endocrinologia/métodos , Hormônios
5.
Protein Sci ; 33(10): e5160, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275998

RESUMO

L-cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O-phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L-cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi-rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L-cys was altered, leading to a reduced affinity between L-cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L-cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L-cysteine production.


Assuntos
Cisteína Sintase , Cisteína , Simulação de Dinâmica Molecular , Cisteína/química , Cisteína/metabolismo , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Cisteína Sintase/genética , Simulação de Acoplamento Molecular , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
Plant Cell Physiol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39275795

RESUMO

Many root parasitic plants in the Orobanchaceae use host-derived strigolactones as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense strigolactones through "divergent" KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT (HTL) α/ß-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes. After germination, chemotropic growth of parasite roots toward a strigolactone source also occurs in some species. We investigated which of the seven KAI2d genes found in a facultative hemiparasite, Phtheirospermum japonicum, may enable chemotropic responses to strigolactones. To do so, we developed a triple mutant Nbd14a,b kai2i line of Nicotiana benthamiana in which strigolactone-induced degradation of SMAX1, an immediate downstream target of KAI2 signaling, is disrupted. In combination with a transiently expressed, ratiometric reporter of SMAX1 protein abundance, this mutant forms a system for the functional analysis of parasite KAI2d proteins in a plant cellular context. Using this system, we unexpectedly found three PjKAI2d proteins that do not trigger SMAX1 degradation in the presence of strigolactones. Instead, these PjKAI2d inhibit the perception of low strigolactone concentrations by strigolactone-responsive PjKAI2d in a dominant-negative manner that depends upon an active catalytic triad. Similar dominant-negative KAI2d paralogs were identified in an obligate hemiparasitic weed, Striga hermonthica. These proteins suggest a mechanism for attenuating strigolactone signaling in parasites, which might be used to enhance the perception of shallow strigolactone gradients during root growth toward a host or to restrict germination responses to specific strigolactones.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1914): 20230352, 2024 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-39343022

RESUMO

A diverse array of plant aromatic compounds contributes to the tremendous chemical diversity in the plant kingdom that cannot be seen in microbes or animals. Such chemodiversity of aromatic natural products has emerged, occasionally in a lineage-specific manner, to adopt to challenging environmental niches, as various aromatic specialized metabolites play indispensable roles in plant development and stress responses (e.g. lignin, phytohormones, pigments and defence compounds). These aromatic natural products are synthesized from aromatic amino acids (AAAs), l-tyrosine, l-phenylalanine and l-tryptophan. While amino acid metabolism is generally assumed to be conserved between animals, microbes and plants, recent phylogenomic, biochemical and metabolomic studies have revealed the diversity of the AAA metabolism that supports efficient carbon allocation to downstream biosynthetic pathways of AAA-derived metabolites in plants. This review showcases the intra- and inter-kingdom diversification and origin of committed enzymes involved in plant AAA biosynthesis and catabolism and their potential application as genetic tools for plant metabolic engineering. I also discuss evolutionary trends in the diversification of plant AAA metabolism that expands the chemical diversity of AAA-derived aromatic natural products in plants. This article is part of the theme issue 'The evolution of plant metabolism'.


Assuntos
Aminoácidos Aromáticos , Produtos Biológicos , Plantas , Aminoácidos Aromáticos/metabolismo , Plantas/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Evolução Molecular
8.
New Phytol ; 244(3): 914-933, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39223898

RESUMO

Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.


Assuntos
Chrysanthemum , Regulação da Expressão Gênica de Plantas , Herbivoria , Proteínas de Plantas , Terpenos , Tricomas , Tricomas/metabolismo , Terpenos/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Defesa das Plantas contra Herbivoria , Folhas de Planta/metabolismo , Genes de Plantas , Spodoptera/fisiologia
9.
Appl Environ Microbiol ; 90(9): e0060224, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39177329

RESUMO

The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE: This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.


Assuntos
Acetobacterium , Trifosfato de Adenosina , Ácidos Cafeicos , Ácidos Cafeicos/metabolismo , Trifosfato de Adenosina/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Retroalimentação Fisiológica , Oxirredução , Transporte de Elétrons
10.
Elife ; 132024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196635

RESUMO

Escape behaviors help animals avoid harm from predators and other threats in the environment. Successful escape relies on integrating information from multiple stimulus modalities (of external or internal origin) to compute trajectories toward safe locations, choose between actions that satisfy competing motivations, and execute other strategies that ensure survival. To this end, escape behaviors must be adaptive. When a Drosophila melanogaster larva encounters a noxious stimulus, such as the focal pressure a parasitic wasp applies to the larval cuticle via its ovipositor, it initiates a characteristic escape response. The escape sequence consists of an initial abrupt bending, lateral rolling, and finally rapid crawling. Previous work has shown that the detection of noxious stimuli primarily relies on class IV multi-dendritic arborization neurons (Class IV neurons) located beneath the body wall, and more recent studies have identified several important components in the nociceptive neural circuitry involved in rolling. However, the neural mechanisms that underlie the rolling-escape sequence remain unclear. Here, we present both functional and anatomical evidence suggesting that bilateral descending neurons within the subesophageal zone of D. melanogaster larva play a crucial role in regulating the termination of rolling and subsequent transition to escape crawling. We demonstrate that these descending neurons (designated SeIN128) are inhibitory and receive inputs from a second-order interneuron upstream (Basin-2) and an ascending neuron downstream of Basin-2 (A00c). Together with optogenetic experiments showing that co-activation of SeIN128 neurons and Basin-2 influence the temporal dynamics of rolling, our findings collectively suggest that the ensemble of SeIN128, Basin-2, and A00c neurons forms a GABAergic feedback loop onto Basin-2, which inhibits rolling and thereby facilitates the shift to escape crawling.


Assuntos
Drosophila melanogaster , Reação de Fuga , Neurônios GABAérgicos , Larva , Animais , Larva/fisiologia , Neurônios GABAérgicos/fisiologia , Reação de Fuga/fisiologia , Drosophila melanogaster/fisiologia , Retroalimentação Fisiológica
11.
Protein Sci ; 33(8): e5108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989547

RESUMO

Mitochondrial magnesium (Mg2+) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg2+ channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg2+, yet the regulation of human MRS2 and orthologues by Mg2+ binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg2+ sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg2+-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~µM affinity, which is weakened by up to two orders of magnitude in the presence of Mg2+ for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg2+ sensing by MRS2 to prevent matrix Mg2+ overload as HeLa cells overexpressing MRS2 show enhanced Mg2+ uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg2+ sensor that undergoes conformational and assembly changes upon Mg2+ interactions dependent on D216 to temper matrix Mg2+ overload.


Assuntos
Apoptose , Proteínas de Transporte de Cátions , Movimento Celular , Mutação de Sentido Incorreto , Humanos , Células HeLa , Magnésio/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Ligação Proteica , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
12.
Am J Physiol Renal Physiol ; 327(2): F265-F276, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867672

RESUMO

Ubiquitination influences the expression of the epithelial Na+ channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and Fisher rat thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaCs were strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see whether location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination, we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when coexpressed with α- and ßENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total and ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na+ could stimulate ubiquitination. Administration of amiloride to block Na+ entry through the channels did not affect ubiquitination of γENaC in either FRT cells or the rat kidney. However, presumed large increases in cellular Na+ produced by monensin in FRT cells or acute Na+ repletion in rats increased ubiquitination and decreased overall ENaC expression.NEW & NOTEWORTHY We have explored the mechanisms underlying the ubiquitination of the γ subunit of epithelial Na+ channel (ENaC), a process believed to control channel internalization and degradation. We previously reported that the mature, cleaved form of the subunit is selectively ubiquitinated. Here we show that this specificity arises not from the cleavage state of the protein but from its location in the cell. We also show that under some conditions, increased intracellular Na+ can stimulate ENaC ubiquitination.


Assuntos
Endocitose , Canais Epiteliais de Sódio , Rim , Ubiquitinação , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/genética , Animais , Rim/metabolismo , Ratos , Ratos Endogâmicos F344 , Masculino
13.
FEBS Open Bio ; 14(8): 1320-1339, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923323

RESUMO

Mevalonate kinase is a key regulator of the mevalonate pathway, subject to feedback inhibition by the downstream metabolite farnesyl pyrophosphate. In this study, we validated the hypothesis that monophosphonate compounds mimicking farnesyl pyrophosphate can inhibit mevalonate kinase. Exploring compounds originally synthesized as allosteric inhibitors of farnesyl pyrophosphate synthase, we discovered mevalonate kinase inhibitors with nanomolar activity. Kinetic characterization of the two most potent inhibitors demonstrated Ki values of 3.1 and 22 nm. Structural comparison suggested features of these inhibitors likely responsible for their potency. Our findings introduce the first class of nanomolar inhibitors of human mevalonate kinase, opening avenues for future research. These compounds might prove useful as molecular tools to study mevalonate pathway regulation and evaluate mevalonate kinase as a potential therapeutic target.


Assuntos
Inibidores Enzimáticos , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Regulação Alostérica/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Sesquiterpenos/química
14.
Front Mol Neurosci ; 17: 1347540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813436

RESUMO

Dm9 neurons in Drosophila have been proposed as functional homologs of horizontal cells in the outer retina of vertebrates. Here we combine genetic dissection of neuronal circuit function, two-photon calcium imaging in Dm9 and inner photoreceptors, and immunohistochemical analysis to reveal novel insights into the functional role of Dm9 in early visual processing. Our experiments show that Dm9 receive input from all four types of inner photoreceptor R7p, R7y, R8p, and R8y. Histamine released from all types R7/R8 directly inhibits Dm9 via the histamine receptor Ort, and outweighs simultaneous histamine-independent excitation of Dm9 by UV-sensitive R7. Dm9 in turn provides inhibitory feedback to all R7/R8, which is sufficient for color-opponent processing in R7 but not R8. Color opponent processing in R8 requires additional synaptic inhibition by R7 of the same ommatidium via axo-axonal synapses and the second Drosophila histamine receptor HisCl1. Notably, optogenetic inhibition of Dm9 prohibits color opponent processing in all types of R7/R8 and decreases intracellular calcium in photoreceptor terminals. The latter likely results from reduced release of excitatory glutamate from Dm9 and shifts overall photoreceptor sensitivity toward higher light intensities. In summary, our results underscore a key role of Dm9 in color opponent processing in Drosophila and suggest a second role of Dm9 in regulating light adaptation in inner photoreceptors. These novel findings on Dm9 are indeed reminiscent of the versatile functions of horizontal cells in the vertebrate retina.

15.
Plant Physiol Biochem ; 210: 108618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631157

RESUMO

The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 µM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.


Assuntos
Acacia , Metionina Adenosiltransferase , Acacia/genética , Acacia/metabolismo , Acacia/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cinética , S-Adenosilmetionina/metabolismo , Concentração de Íons de Hidrogênio
16.
Synth Syst Biotechnol ; 9(2): 349-358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549615

RESUMO

Due to the complicated metabolic and regulatory networks of l-serine biosynthesis and degradation, microbial cell factories for l-serine production using non-model microorganisms have not been reported. In this study, a combination of synthetic biology and process optimization were applied in an ethanologenic bacterium Zymomonas mobilis for l-serine production. By blocking the degradation pathway while introducing an exporter EceamA from E. coli, l-serine titer in recombinant Z. mobilis was increased from 15.30 mg/L to 62.67 mg/L. It was further increased to 260.33 mg/L after enhancing the l-serine biosynthesis pathway. Then, 536.70 mg/L l-serine was achieved by removing feedback inhibition with a SerA mutant, and an elevated titer of 687.67 mg/L was further obtained through increasing serB copies while enhancing the precursors. Finally, 855.66 mg/L l-serine can be accumulated with the supplementation of the glutamate precursor. This work thus not only constructed an l-serine producer to help understand the bottlenecks limiting l-serine production in Z. mobilis for further improvement, but also provides guidance on engineering non-model microbes to produce biochemicals with complicated pathways such as amino acids or terpenoids.

17.
Appl Microbiol Biotechnol ; 108(1): 245, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421431

RESUMO

Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.


Assuntos
Monoterpenos Acíclicos , Ácido Mevalônico , Terpenos , Escherichia coli/genética , Monoterpenos , Fosfatos
18.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 203-215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411551

RESUMO

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.


Assuntos
Archaea , Ácido Mevalônico , Ácido Mevalônico/metabolismo , Archaea/metabolismo , Methanosarcinaceae/química , Methanosarcinaceae/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química
19.
Biotechnol J ; 19(1): e2300275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861236

RESUMO

Phenylalanine ammonia-lyase (PAL) is a crucial enzyme for various biotechnology applications, such as producing phenols, antioxidants, and nutraceuticals. However, feedback inhibition from its product, cinnamic acid, limits its forward reaction rate. Therefore, this study aims to address the feedback inhibition in PAL using enzyme engineering strategies. Random and site-directed mutagenesis approaches were utilized to screen mutant enzymes with ameliorated tolerance against cinnamic acid. A thermotolerant and cinnamate-tolerant mutant was rationally identified using a high throughput screening method and subsequent biochemical characterization. We evaluated cinnamate affinity among the seven rationally selected mutations, and the T102E mutation was identified as the most promising mutant. This mutant showed a six-fold reduction in the affinity of PAL for cinnamic acid and a two-fold increase in operational stability compared with native PAL. Furthermore, the enzyme was immobilized on carbon nanotubes to increase its robustness and reusability. The immobilized mutant PAL showed greater efficiency in the deamination of phenylalanine present in protein hydrolysate than its free form. The rationale behind the enhancement of cinnamate tolerance was validated using molecular dynamic simulations. Overall, the knowledge of the sequence-function relationship of PAL was applied to drive enzyme engineering to develop highly tolerant PAL.


Assuntos
Nanotubos de Carbono , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Retroalimentação , Cinamatos , Biotransformação
20.
Semin Cell Dev Biol ; 155(Pt A): 3-9, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858897

RESUMO

Maintaining proper metabolite levels in a complex metabolic network is crucial for maintaining a high flux through the network. In this paper, we discuss major regulatory mechanisms over the Calvin Benson Cycle (CBC) with regard to their roles in conferring homeostasis of metabolite levels in CBC. These include: 1) Redox regulation of enzymes in the CBC on one hand ensures that metabolite levels stay above certain lower bounds under low light while on the other hand increases the flux through the CBC under high light. 2) Metabolite regulations, especially allosteric regulations of major regulatory enzymes, ensure the rapid up-regulation of fluxes to ensure sufficient amount of triose phosphate is available for end product synthesis and concurrently avoid phosphate limitation. 3) A balanced activities of enzymes in the CBC help maintain balanced flux through CBC; some innate product feedback mechanisms, in particular the ADP feedback regulation of GAPDH and F6P feedback regulation of FBPase, exist in CBC to achieve such a balanced enzyme activities and hence flux distribution in the CBC for greater photosynthetic efficiency. Transcriptional regulation and natural variations of enzymes controlling CBC metabolite homeostasis should be further explored to maximize the potential of engineering CBC for greater efficiency.


Assuntos
Fosfatos , Fotossíntese , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA