Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Med Food ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167545

RESUMO

Fermented red ginseng (FRG) enhances the bioactivity and bioavailability of ginsenosides, which possess various immunomodulatory, antiaging, anti-obesity, and antidiabetic properties. However, the effects of FRG extract on muscle atrophy and the underlying molecular mechanisms remain unclear. This study aimed to elucidate the effects of FRG extract on muscle atrophy using both in vitro and in vivo models. In vitro experiments used dexamethasone (DEX)-induced C2C12 myotubes to assess cell viability, myotube diameter, and fusion index. In vivo experiments were conducted on hind limb immobilization (HI)-induced mice to evaluate grip strength, muscle mass, and fiber cross-sectional area (CSA) of the gastrocnemius (GAS), quadriceps (QUA), and soleus (SOL) muscles. Molecular mechanisms were investigated through the analysis of key signaling pathways associated with muscle protein synthesis, energy metabolism, and protein degradation. FRG extract treatment enhanced viability of DEX-induced C2C12 myotubes and restored myotube diameter and fusion index. In HI-induced mice, FRG extract improved grip strength, increased muscle mass and CSA of GAS, QUA, and SOL muscles. Mechanistic studies revealed that FRG extract activated the insulin-like growth factor 1/protein kinase B (Akt)/mammalian target of rapamycin signaling pathway, promoted muscle energy metabolism via the sirtuin 1/peroxisome proliferator-activated receptor gamma-coactivator-1α pathway, and inhibited muscle protein degradation by suppressing the forkhead box O3a, muscle ring-finger 1, and F-box protein (Fbx32) signaling pathways. FRG extract shows promise for ameliorating muscle atrophy by modulating key molecular pathways associated with muscle protein synthesis, energy metabolism, and protein degradation, offering insights for future drug development.

2.
J Ginseng Res ; 47(2): 255-264, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926604

RESUMO

Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-ß-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

3.
Pharmaceutics ; 14(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559300

RESUMO

Fermentation of red ginseng (RG) produces fermented red ginseng (FRG), thereby increasing the relative amount of downstream ginsenosides, including compound Y (CY), F2, Rh2, compound K (CK), compound O, protopanaxadiol (PPD), and protopanaxatriol (PPT). These downstream ginsenosides have beneficial pharmacological effects, and are easily absorbed by the human body. Based on these expectations, a randomized, single-dose, two-period, crossover clinical trial was planned to compare the pharmacokinetic characteristics of seven types (Rb1, CY, F2, CK, Rh2, PPD, and PPT) of ginsenoside components after FRG and RG administration. The safety and tolerability profiles were assessed in this clinical trial. Sixteen healthy Korean male subjects were administered 6 g of FRG or RG. All ginsenosides except Rb1 showed higher systemic exposure after FRG administration than after RG administration, based on comparisons of ginsenoside Cmax and area under the concentration-time curve (AUC) between FRG and RG. CK, the main ginsenoside component produced during the fermentation process, had 69.23/74.53-fold higher Cmax/AUClast after administration of FRG than RG, and Rh2 had 20.27/18.47-fold higher Cmax/AUClast after administration of FRG than RG. In addition, CY and F2 were detected in FRG; however, all plasma concentrations of CY and F2, except in one subject, were below the lower limit of quantification in RG. There were no clinically significant findings with respect to clinical laboratory tests, blood pressures, or adverse events. Therefore, regular administration of FRG may exert better pharmacological effects than RG.

4.
Front Pharmacol ; 13: 999192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532751

RESUMO

Ginseng and ginsenosides have been reported to have various pharmacological effects, but their efficacies depend on intestinal absorption. Compound K (CK) is gaining prominence for its biological and pharmaceutical properties. In this study, CK-enriched fermented red ginseng extract (DDK-401) was prepared by enzymatic reactions. To examine its pharmacokinetics, a randomized, single-dose, two-sequence, crossover study was performed with eleven healthy Korean male and female volunteers. The volunteers were assigned to take a single oral dose of one of two extracts, DDK-401 or common red ginseng extract (DDK-204), during the initial period. After a 7-day washout, they received the other extract. The pharmacokinetics of DDK-401 showed that its maximum plasma concentration (Cmax) occurred at 184.8 ± 39.64 ng/mL, Tmax was at 2.4 h, and AUC0-12h was 920.3 ± 194.70 ng h/mL, which were all better than those of DDK-204. The maximum CK absorption in the female volunteers was higher than that in the male volunteers. The differentially expressed genes from the male and female groups were subjected to a KEGG pathway analysis, which showed results in the cell death pathway, such as apoptosis and necroptosis. In cytotoxicity tests, DDK-401 and DDK-204 were not particularly toxic to normal (HaCaT) cells, but at a concentration of 250 µg/mL, DDK-401 had a much higher toxicity to human lung cancer (A549) cells than DDK-204. DDK-401 also showed a stronger antioxidant capacity than DDK-204 in both the DPPH and potassium ferricyanide reducing power assays. DDK-401 reduced the reactive oxygen species production in HaCaT cells with induced oxidative stress and led to apoptosis in the A549 cells. In the mRNA sequence analysis, a signaling pathway with selected marker genes was assessed by RT-PCR. In the HaCaT cells, DDK-401 and DDK-204 did not regulate FOXO3, TLR4, MMP-9, or p38 expression; however, in the A549 cells, DDK-401 downregulated the expressions of MMP9 and TLR4 as well as upregulated the expressions of the p38 and caspase-8 genes compared to DDK-204. These results suggest that DDK-401 could act as a molecular switch for these two cellular processes in response to cell damage signaling and that it could be a potential candidate for further evaluations in health promotion studies.

5.
Nutrients ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565660

RESUMO

Fermented red ginseng (FRG) has been used as a general stimulant and herbal medicine for health promotion in Asia for thousands of years. Few studies have investigated the effects of FRG containing prebiotics on the gut microbiota. Here, 29 Korean women aged ≥ 50 years were administered FRG for three weeks to determine its effect on stool characteristics, biochemical parameters, and gut microbiome. Gut microbial DNA was subjected to 16S rRNA V3-V4 region sequencing to assess microbial distribution in different stages. Additionally, the stool consistency, frequency of bowel movements, and biochemical parameters of blood were evaluated. We found that FRG intake improved stool consistency and increased the frequency of bowel movements compared to before intake. Biochemical parameters such as glucose, triglyceride, cholesterol, low-density lipoprotein cholesterol, creatinine, alkaline phosphatase, and lactate dehydrogenase decreased and high-density lipoprotein cholesterol increased with FRG intake. Gut microbiome analysis revealed 20 specific bacteria after three weeks of FRG intake. Additionally, 16 pathways correlated with the 20 specific bacteria were enhanced after red ginseng intake. In conclusion, FRG promoted health in elderly women by lowering blood glucose levels and improving bowel movement frequency. The increase in bacteria observed with FRG ingestion supports these findings.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Panax , Idoso , Bactérias/genética , Feminino , Humanos , RNA Ribossômico 16S/genética , República da Coreia
6.
J Ginseng Res ; 45(6): 617-630, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764717

RESUMO

Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural non-toxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun N-terminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

7.
J Med Food ; 24(6): 569-576, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34161163

RESUMO

Ginseng (the root of Panax ginseng Meyer) has been reported to have many biologic therapeutic effects, including anti-inflammatory properties, and ginsenosides are considered as one of the factors responsible for these therapeutic effects. To improve their therapeutic action, probiotic bacteria are used to ferment and chemically transform ginsenosides in red ginseng (RG). In this study, we aimed to investigate the beneficial effects of RG fermented by probiotic bacteria (FRG) against ovalbumin (OVA)-induced allergic rhinitis in a mouse model. We induced the mouse model via OVA inhalation; experimental results revealed increased immunoglobulin E (IgE) and interleukin (IL)-4 levels, leading to Th2-type cytokine response. The mice with induced allergy were then orally administered RG and FRG over 2 weeks, as a result of which, IL-4 and IgE levels in bronchoalveolar lavage fluid, nasal fluid, and serum were found to be ameliorated more effectively by FRG than by RG, suggesting that FRG has better immune regulatory effects than RG. FRG also downregulated immune cell levels, such as those of eosinophils and basophils, and significantly decreased the thickness of OVA-induced respiratory epithelium compared to RG. Collectively, the results showed that FRG treatment alleviates inflammation, thereby extending a protective effect to mice with OVA-induced inflammatory allergic rhinitis.


Assuntos
Alimentos Fermentados , Imunoglobulina E , Interleucina-4 , Rinite Alérgica , Animais , Citocinas/genética , Modelos Animais de Doenças , Inflamação , Interleucina-4/genética , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Panax , Rinite Alérgica/tratamento farmacológico
8.
J Ginseng Res ; 44(6): 770-774, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33192119

RESUMO

BACKGROUND: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. METHODS: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. RESULTS: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. CONCLUSION: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

9.
Nutrients ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224881

RESUMO

Gut dysbiosis is closely connected with the outbreak of psychiatric disorders with colitis. Bifidobacteria-fermented red ginseng (fRG) increases the absorption of ginsenoside Rd and protopanxatriol into the blood in volunteers and mice. fRG and Rd alleviates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Therefore, to understand the gut microbiota-mediated mechanism of fRG against anxiety/depression, we examined the effects of red ginseng (RG), fRG, ginsenoside Rd, and protopanaxatriol on the occurrence of anxiety/depression, colitis, and gut dysbiosis in mice. Mice with anxiety/depression were prepared by being exposed to two stressors, immobilization stress (IS) or Escherichia coli (EC). Treatment with RG and fRG significantly mitigated the stress-induced anxiety/depression-like behaviors in elevated plus maze, light-dark transition, forced swimming (FST), and tail suspension tasks (TST) and reduced corticosterone levels in the blood. Their treatments also suppressed the stress-induced NF-κB activation and NF-κB+/Iba1+ cell population in the hippocampus, while the brain-derived neurotrophic factor (BDNF) expression and BDNF+/NeuN+ cell population were increased. Furthermore, treatment with RG or fRG suppressed the stress-induced colitis: they suppressed myeloperoxidase activity, NF-κB activation, and NF-κB+/CD11c+ cell population in the colon. In particular, fRG suppressed the EC-induced depression-like behaviors in FST and TST and colitis more strongly than RG. fRG treatment also significantly alleviated the EC-induced NF-κB+/Iba1+ cell population and EC-suppressed BDNF+/NeuN+ cell population in the hippocampus more strongly than RG. RG and fRG alleviated EC-induced gut dysbiosis: they increased Bacteroidetes population and decreased Proteobacteria population. Rd and protopanaxatriol also alleviated EC-induced anxiety/depression and colitis. In conclusion, fRG and its constituents Rd and protopanaxatriol mitigated anxiety/depression and colitis by regulating NF-κB-mediated BDNF expression and gut dysbiosis.


Assuntos
Depressão , Alimentos Fermentados , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Sapogeninas/farmacologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Bifidobacterium/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Panax/química , Panax/metabolismo
10.
Molecules ; 25(5)2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182681

RESUMO

The ω-hydroxyl-panaxytriol (1) and ω-hydroxyl-dihydropanaxytriol (2)-are rare examples of polyacetylene metabolism by microbial transformation, and these new metabolites (1, 2) from fermented red ginseng (FRG) by solid co-culture induction of two Chaetomium globosum should be the intermediates of biotransformation of panaxylactone (metabolite A). The metabolic pathway of panaxylactone was also exhibited. The ingredients of red ginseng (RG) also induced the production of rare 6/5/5 tricyclic ring spiro-γ-lactone skeleton (3). The ω-hydroxylation of new intermediates (1, 2) decreases cytotoxicity and antifungal activity against C. globosum compared with that of its bioprecursor panaxytriol. Additionally, compounds 1 and 2 indicated obvious inhibition against nitric oxide (NO) production, with ratios of 44.80 ± 1.37 and 23.10 ± 1.00% at 50 µM. 1 has an equivalent inhibition of NO production compared with the positive drug. So, the microbial biotransformation that occurred in FRG fermented by gut C. globosum can change the original bioactivity of polyacetylene, which gave a basis about the metabolic modification of red ginseng by intestinal fungus fermentation.


Assuntos
Chaetomium/metabolismo , Microbioma Gastrointestinal , Lactonas , Panax/química , Polímero Poliacetilênico/metabolismo , Lactonas/química , Lactonas/farmacologia
11.
Am J Chin Med ; 46(8): 1879-1897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30518233

RESUMO

A variety of products have been developed with red ginseng (RG, the steamed roots of Panax ginseng Meyer). To clarify the immunomodulating effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), enzyme-treated eRG (ERG) and probiotic-fermented eRG (FRG), we examined their immunopotentiating and immunosuppressive effects in mice with cyclophosphamide (CP)-induced immunosuppression (CI) or 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis (TC). Oral administration of RG in CI mice significantly increased blood IFN- γ levels. Treatment with RG also increased the tumoricidal effects of CI mouse splenic cytotoxic T (Tc) and NK cells against YAC-1 cells. Treatment with RGs, in particular FRG and wRG, significantly increased Th1 cell differentiation. Treatment with RG except wRG increased Treg cell differentiation. However, wRG alone increased IL-6 and IL-17 expression in the colon of CI mice. Furthermore, RG alleviated colitis in TC mice. FRG most potently suppressed TNBS-induced colon shortening, NF- κ B activation and TNF- α and IL-17 expression and increased IL-10 expression. RGs inhibited TNF- α expression and increased IL-10 expression in lipopolysaccharide-stimulated primary macrophages in vitro while the differentiation of splenic T cells into type 1 T (Th1) and regulatory T (Treg) cells was increased by FRG in vitro. In conclusion, FRG can alleviate immunosuppression and inflammation by inhibiting macrophage activation and regulating Th1 and Treg cell differentiation.


Assuntos
Adjuvantes Imunológicos , Diferenciação Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Ciclofosfamida/antagonistas & inibidores , Fermentação , Imunossupressores/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Panax/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Linfócitos T/fisiologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Administração Oral , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação
12.
J Ginseng Res ; 42(4): 577-584, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344431

RESUMO

BACKGROUND: Ginseng (Panax ginseng) is a widely used traditional herbal supplement that possesses various health-enhancing efficacies. Various ginseng products are available in market, especially in the Korean peninsula, in the form of drinks, tablets, and capsules. The different ginseng types include the traditional red ginseng extract (RGE), white ginseng, and black red ginseng extract (BRGE). Their fermented and enzyme-treated products are also available. Different treatment regimens alter the bioavailability of certain compounds present in the respective ginseng extracts. Therefore, in this study, we aimed to compare the antioxidant and immune-stimulating activities of RGE, BRGE, and fermented red ginseng extract (FRGE). METHODS: We used an acetaminophen-induced oxidative stress model for investigating the reduction of oxidative stress by RGE, BRGE, and FRGE in Sprague Dawley rats. A cyclophosphamide-induced immunosuppression model was used to evaluate the immune-stimulating activities of these ginseng extracts in BALB/c mice. RESULTS: Our results showed that most prominently, RGE (in almost all experiments) exhibited excellent antioxidant effects via increasing superoxide dismutase, catalase, and glutathione peroxidase activities in the liver and decreasing serum 8-hydroxy-2'-deoxyguanosine, aspartate aminotransferase, and lactate dehydrogenase levels compared with the groups treated with FRGE and BRGE. Moreover, RGE significantly increased the number of white blood cells, especially T and B lymphocytes, and antibody-forming cells in the spleen and thymus, and it also activated a number of immune cell subtypes. CONCLUSION: Taken together, these results indicate that RGE is the best supplement for consumption in everyday life for overall health-enhancing properties.

13.
Chin J Integr Med ; 23(5): 331-337, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26142337

RESUMO

OBJECTIVE: To investigate the adjuvant therapeutic effects of fermented red ginseng (FRG) extract on non-small cell lung cancer (NSCLC) patients treated with chemotherapy. METHODS: A total of 60 patients with advanced NSCLC were divided into two groups using a random number table, i.e., the gemcitabine plus cisplatin (GP) chemotherapy alone group (26 patients) and the FRG + GP chemotherapy group (34 patients), for 60-day treatment. Patients were then assessed according to the Fatigue Symptom Inventory, Chinese medicine symptoms score, Self-Rating Anxiety Scale, Self-Rating Depression Scale, Karnofsky Performance Status Scale, and Functional Assessment of Cancer Therapy-Lung. In addition, chemotherapy toxicity and tumor biomarkers were measured. RESULTS: For NSCLC patients after chemotherapy, FRG extract significantly improved the FSI score, CM symptoms score, psychological status, physical conditions, and quality of life and reduced chemotherapy toxicity, but the expression levels of carcinoembryonic antigen, cytokeratin-19 fragments, and neuron-specific enolase were not significantly different between the chemotherapy alone and the FRG + chemotherapy groups or between pre- and post-treatments. CONCLUSIONS: This study demonstrated that FRG extract had an adjuvant effect on advanced NSCLC patients treated with chemotherapy. Further studies with a larger sample size will verify the current findings.


Assuntos
Adjuvantes Farmacêuticos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Fermentação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Extratos Vegetais/uso terapêutico , Adjuvantes Farmacêuticos/efeitos adversos , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/psicologia , Feminino , Humanos , Neoplasias Pulmonares/psicologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Panax , Extratos Vegetais/efeitos adversos , Qualidade de Vida , Inquéritos e Questionários
14.
Am J Chin Med ; 44(8): 1595-1606, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27852129

RESUMO

The total amount of ginsenoside in fermented red ginseng (FRG) is increased by microbial fermentation. The aim of this study was to evaluate whether fermentation time and temperature affect the ginsenoside content during fermentation using an appliance for the preparation of red ginseng. The FRG and fermented red ginseng extracts (FRG-e) were prepared using an appliance for the preparation of red ginseng. The temperature was recorded and time points for sampling were scheduled at pre-fermentation (0[Formula: see text]h) and 18, 36, 48, 60 and 72[Formula: see text]h after the addition of the microbial strains. Samples of FRG and FRG-e were collected to identify changes in the ginsenoside contents at each time point during the fermentation process. The ginsenoside content was analyzed using high performance liquid chromatography (HPLC). The levels of ginsenoside Rh1, Rg3, and compound Y, which are known to have effective pharmacological properties, increased more than three-fold in the final products of FRG relative to samples prior to fermentation. Although the ginsenoside constituents of FRG-e decreased or increased and then decreased during fermentation, the total amount of ginsenoside in FRG-e was even higher than those in FRG; the total amounts of ginsenoside in FRG-e and FRG were 8282.8 and 738.0[Formula: see text]mg, respectively. This study examined the changes in composition of ginsenosides and suggests a method to manufacture high-content total ginsenosides according to the fermentation temperature and process time. Reducing the extraction time is expected to improve the decrease of ginsenosides in FRG-e as a function of the fermentation time.


Assuntos
Fermentação , Ginsenosídeos/análise , Ginsenosídeos/isolamento & purificação , Panax/química , Tecnologia Farmacêutica/instrumentação , Cromatografia Líquida de Alta Pressão , Tecnologia Farmacêutica/métodos , Temperatura , Fatores de Tempo
15.
Br J Clin Pharmacol ; 82(6): 1580-1590, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27495955

RESUMO

AIMS: We assessed the drug interaction profile of fermented red ginseng with respect to the activity of major cytochrome (CYP) P450 enzymes and of a drug transporter protein, P-glycoprotein (P-gp), in healthy volunteers. METHODS: This study was an open-label crossover study. The CYP probe cocktail drugs caffeine, losartan, dextromethorphan, omeprazole, midazolam and fexofenadine were administered before and after 2 weeks of fermented red ginseng administration. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and the 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data. Values were compared between before and after fermented red ginseng administration using analysis of variance (anova). RESULTS: Fifteen healthy male subjects were evaluated, none of whom were genetically defined as a poor CYP2C9, CYP2C19 or CYP2D6 metabolizer based on genotyping. Before and after fermented red ginseng administration, the geometric least-square mean metabolic ratio (90% CI) was 0.901 (0.830-0.979) for caffeine (CYP1A2) to paraxanthine, 0.774 (0.720-0.831) for losartan (CYP2C9) to EXP3174, 1.052 (0.925-1.197) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.150 (0.860-1.538) for dextromethorphan (CYP2D6) to dextrorphan, and 0.816 (0.673-0.990) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time (AUClast ) for fexofenadine (P-gp) was 1.322 (1.112-1.571). CONCLUSION: No significantly different drug interactions were observed between fermented red ginseng and the CYP probe substrates following the two-week administration of concentrated fermented red ginseng. However, the inhibition of P-gp was significantly different between fermented red ginseng and the CYP probe substrates. The use of fermented red ginseng requires close attention due to the potential for increased systemic exposure when it is used in combination with P-gp substrate drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Alimentos Fermentados , Panax , Preparações Farmacêuticas/metabolismo , Adulto , Cafeína/administração & dosagem , Cafeína/farmacocinética , Estudos Cross-Over , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Losartan/administração & dosagem , Losartan/farmacocinética , Masculino , Midazolam/administração & dosagem , Midazolam/farmacocinética , Pessoa de Meia-Idade , Omeprazol/administração & dosagem , Omeprazol/farmacocinética , Preparações Farmacêuticas/administração & dosagem , Terfenadina/administração & dosagem , Terfenadina/análogos & derivados , Terfenadina/farmacocinética , Adulto Jovem
16.
Nutrients ; 8(6)2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27322312

RESUMO

Metabolic syndrome including obesity, dyslipidemia and hypertension is a cluster of risk factors of cardiovascular disease. Fermentation of medicinal herbs improves their pharmacological efficacy. Red ginseng (RG), a widely used traditional herbal medicine, was reported with anti-inflammatory and anti-oxidant activity. Aim in the present study was to investigate that the effects of fermented red ginseng (FRG) on a high-fructose (HF) diet induced metabolic disorders, and those effects were compared to RG and losartan. Animals were divided into four groups: a control group fed a regular diet and tap water, and fructose groups that were fed a 60% high-fructose (HF) diet with/without RG 250 mg/kg/day or FRG 250 mg/kg/day for eight weeks, respectively. Treatment with FRG significantly suppressed the increments of body weight, liver weight, epididymal fat weight and adipocyte size. Moreover, FRG significantly prevented the development of metabolic disturbances such as hyperlipidemia and hypertension. Staining with Oil-red-o demonstrated a marked increase of hepatic accumulation of triglycerides, and this increase was prevented by FRG. FRG ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1) and adhesion molecules in the aorta. In addition, FRG induced markedly upregulation of Insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (Glut4) in the muscle. These results indicate that FRG ameliorates obesity, dyslipidemia, hypertension and fatty liver in HF diet rats. More favorable pharmacological effects on HF diet induced metabolic disorders were observed with FRG, compared to an equal dose of RG. These results showed that the pharmacological activity of RG was enhanced by fermentation. Taken together, fermentated red ginseng might be a beneficial therapeutic approach for metabolic syndrome.


Assuntos
Fermentação , Síndrome Metabólica/tratamento farmacológico , Panax/química , Fitoterapia , Preparações de Plantas/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Modelos Animais de Doenças , Regulação para Baixo , Endotelina-1/genética , Endotelina-1/metabolismo , Frutose/administração & dosagem , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Losartan/farmacologia , Síndrome Metabólica/induzido quimicamente , Obesidade/tratamento farmacológico , Tamanho do Órgão/efeitos dos fármacos , Ratos , Triglicerídeos/sangue , Regulação para Cima
17.
Lab Anim Res ; 32(4): 217-223, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28053615

RESUMO

This study was performed to investigate the antioxidant and hepatoprotective effects of fermented red ginseng (Panax ginseng C.A. Meyer; FRG) on high-fat diet-induced hyperlipidemia in rats. Sprague-Dawley rats were divided into four groups of seven: normal control, NC; high-fat diet control, HFC; high-fat diet-0.5% FRG, HF-FRGL; and high-fat diet-1% FRG, HF-FRGH. All rats were fed a high-fat diet for eight weeks, except those in the NC group, while rats in the FRG treatment groups received drinking water containing 0.5% or 1% FRG. After eight weeks of treatment, levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C) in the serum were measured. The concentration of the oxidative stress marker malondialdehyde (MDA), and activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in rat liver were evaluated. Histological analysis of the liver was performed using hematoxylin and eosin. The high-fat diet markedly increased serum levels of ALT, AST, TC, TG, and LDL-C and hepatic MDA levels, while administration of FRG to the hyperlipidemic rats resulted in a significant decline in the levels of these parameters. Furthermore, the decline in the levels of serum HDL-C and hepatic SOD, CAT, and GSH-Px induced by the high-fat diet was attenuated by FRG treatment. In addition, histopathological analysis of liver sections suggested that FRG treatment also provided protection against liver damage. These results suggested that FRG improved lipid profiles, inhibited lipid peroxidation, and played a protective role against liver injury in hyperlipidemic rats.

18.
J Ginseng Res ; 39(4): 331-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26869825

RESUMO

BACKGROUND: The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, "ob/ob") mice. METHODS: The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma (PPAR-γ), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. RESULTS: FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, PPAR-γ, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. CONCLUSION: These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice.

19.
J Ginseng Res ; 39(4): 392-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26869833

RESUMO

BACKGROUND: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. METHODS: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. RESULTS: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. CONCLUSION: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

20.
Prev Nutr Food Sci ; 19(1): 10-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24772404

RESUMO

In this study, Woongjin fermented red ginseng extract (WFRG) was evaluated for its potential ability to act as an adjuvant for the immune response of mice. For the in vitro study, macrophages were treated with serial concentrations (1 µg/mL, 10 µg/mL, and 100 µg/mL) of WFRG. For in vivo studies, mice were administered different concentrations (10 mg/kg/day, 100 mg/kg/day, and 200 mg/kg/day) of WFRG orally for 21 days. In vitro, the production of nitric oxide and TNF-α by RAW 264.7 cells increased in a dose-dependent manner. In vivo, WFRG enhanced the proliferation of splenocytes induced by two mitogens (i.e., concanavalin A and lipopolysaccharide [LPS]) and increased LPS-induced production of TNF-α and IL-6, but not IL-1ß. In conclusion, WFRG has the potential to modulate immune function and should be further investigated as an immunostimulatory agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA