Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Differentiation ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37783652

RESUMO

Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.

2.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
3.
Genes (Basel) ; 14(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37239467

RESUMO

Fibroblast growth factor 9 (FGF9) is crucial for the growth and development of hair follicles (HFs); however, its role in sheep wool growth is unknown. Here, we clarified the role of FGF9 in HF growth in the small-tailed Han sheep by quantifying FGF9 expression in skin tissue sections collected at different periods. Moreover, we evaluated the effects of FGF9 protein supplementation on hair shaft growth in vitro and FGF9 knockdown on cultured dermal papilla cells (DPCs). The relationship between FGF9 and the Wnt/ß-catenin signaling pathway was examined, and the underlying mechanisms of FGF9-mediated DPC proliferation were investigated. The results show that FGF9 expression varies throughout the HF cycle and participates in wool growth. The proliferation rate and cell cycle of FGF9-treated DPCs substantially increase compared to that of the control group, and the mRNA and protein expression of CTNNB1, a Wnt/ß-catenin signaling pathway marker gene, is considerably lower than that in the control group. The opposite occurs in FGF9-knockdown DPCs. Moreover, other signaling pathways are enriched in the FGF9-treated group. In conclusion, FGF9 accelerates the proliferation and cell cycle of DPCs and may regulate HF growth and development through the Wnt/ß-catenin signaling pathway.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Folículo Piloso , Animais , Ovinos , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Cabelo , Via de Sinalização Wnt
4.
J Clin Med ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769456

RESUMO

BACKGROUND: The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Fibroblast growth factor 9 (FGF9) was reported to exert a protective effect against myocardial damage and cerebral ischemia injury, but the impact of FGF9 in random flap survival is still unclear. In this study, we used a mouse model of random flaps to verify that FGF9 can directly increase flap survival area and blood flow intensity by promoting angiogenesis. MATERIALS AND METHODS: In total, 84 male C57BL/6 mice weighing between 22 and 25 g were randomly divided into three groups (n = 28 each group). After skin flap operation, one group served as a control, a treatment group received FGF9, and a treatment group received FGF9+U0126. All flap samples were incised on postoperative day 7. RESULTS: Our results showed that flap survival was significantly increased in the FGF9 group compared with that in the control group. This protective function was restrained by U0126. The results of histopathology, laser Doppler, and fluorescent staining all showed significant increases in capillary count, collagen deposition, and angiogenesis. FGF9 also significantly increased the expression of antioxidant stress proteins SOD1, eNOS, HO-1, vascular marker proteins CD31, VE cadherin, and pericyte marker protein PDGFRß. Western blot showed that the phosphorylation degree of ERK1/2 increased after FGF9 treatment, and the expression of Nrf2, a downstream factor, was u-regulated. Western blot and immunofluorescence results of apoptosis-related proteins cleaved caspase-3, BAX, and Bcl2 showed that FGF9 inhibited apoptosis. ERK inhibitor U01926 reduced the beneficial effects of FGF9 on skin flap survival, including promoting angiogenesis, and showing antiapoptosis and antioxidative stress activities. CONCLUSIONS: Exogenous FGF9 stimulates angiogenesis of random flap and survival of tissue. the impact of FGF9 is closely linked to the prevention of oxidative stress mediated by ERK1/2-Nrf2. In the function of FGF9 in promoting effective angiogenesis, there may be a close interaction in the FGF9-FGFR-PDGFR-ERK-VE cadherin pathway. In particular, PDGFR and VE cadherin may interact.

5.
Eur J Sport Sci ; 23(10): 2098-2108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36680346

RESUMO

We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group. Several significant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 and ITGB2:rs2230528) and (ITGB2:rs2230528 and FGF9:rs2297429). This study substantiates the efficiency of using a prior knowledge-driven in silico approach to identify candidate genes linked to tendon and ACL injuries. Our biomedical knowledge graph identified and, with further testing, highlighted novel associations of the ITGB2 gene which has not been explored in a genetic case control association study, with ACL rupture risk. We thus recommend a multistep approach including bioinformatics in conjunction with next generation sequencing technology to improve the discovery potential of genomics technologies in musculoskeletal soft tissue injuries.HighlightsA biomedical knowledge graph was modelled for musculoskeletal soft tissue injuries to efficiently identify candidate genes for genetic susceptibility analyses.The biomedical knowledge graph and sequencing data identified potential biologically relevant variants to explore susceptibility to common tendon and ligament injuries. Specifically genetic variants within the ITGB2 and FGF9 genes were associated with ACL risk.Novel allele combinations (HSPG2-ITGB2 and ITGB2-FGF9) showcase the potential effect of ITGB2 in influencing risk of ACL rupture.


Assuntos
Tendão do Calcâneo , Lesões do Ligamento Cruzado Anterior , Tendinopatia , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Ligamento Cruzado Anterior , Predisposição Genética para Doença , Estudos de Casos e Controles , Tendinopatia/genética , Loci Gênicos , Ruptura/genética , Fator 9 de Crescimento de Fibroblastos/genética
6.
Int Immunopharmacol ; 114: 109606, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700776

RESUMO

Osteoarthritis (OA) is a degenerative and progressive disease that affects joints. Pathologically, it is characterized by oxidative stress-mediated excessive chondrocyte apoptosis and mitochondrial dysfunction. Fibroblast growth factor 9 (FGF9) has been shown to exert antioxidant effects and prevent degenerative diseases by activating ERK-related signaling pathways. However, the mechanism of FGF9 in the pathogenesis of OA and its relationship with anti-oxidative stress and related pathways are unclear. In this study, mice with medial meniscus instability (DMM) were used as the in vivo model whereas TBHP-induced chondrocytes served as the in vitro model to explore the mechanism underlying the effects of FGF9 in OA and its association with anti-oxidative stress. Results showed that FGF9 reduced oxidative stress, apoptosis, and mitochondrial dysfunction in TBHP-treated chondrocytes and promoted the nuclear translocation of Nrf2 to activate the Nrf2/HO1 signaling pathway. Interestingly, silencing the Nrf2 gene or blocking the ERK signaling pathway abolished the antioxidant effects of FGF9. FGF9 treatment reduced joint space narrowing, cartilage ossification, and synovial thickening in the DMM model mice. In conclusion, the present findings demonstrate that FGF9 can inhibit TBHP-induced oxidative stress in chondrocytes through the ERK and Nrf2-HO1 signaling pathways and prevent the progression of OA in vivo.


Assuntos
Antioxidantes , Osteoartrite , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Apoptose , Condrócitos , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases
7.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232829

RESUMO

Hepatic metastasis is the critical factor determining tumor-associated mortality in different types of cancer. This is particularly true for uveal melanoma (UM), which almost exclusively metastasizes to the liver. Hepatic stellate cells (HSCs) are the precursors of tumor-associated fibroblasts and support the growth of metastases. However, the underlying mechanisms are widely unknown. Fibroblast growth factor (FGF) signaling is dysregulated in many types of cancer. The aim of this study was to analyze the pro-tumorigenic effects of HSCs on UM cells and the role of FGFs in this crosstalk. Conditioned medium (CM) from activated human HSCs significantly induced proliferation together with enhanced ERK and JNK activation in UM cells. An in silico database analysis revealed that there are almost no mutations of FGF receptors (FGFR) in UM. However, a high FGFR expression was found to be associated with poor survival for UM patients. In vitro, the pro-tumorigenic effects of HSC-CM on UM cells were abrogated by a pharmacological inhibitor (BGJ398) of FGFR1/2/3. The expression analysis revealed that the majority of paracrine FGFs are expressed by HSCs, but not by UM cells, including FGF9. Furthermore, the immunofluorescence analysis indicated HSCs as a cellular source of FGF9 in hepatic metastases of UM patients. Treatment with recombinant FGF9 significantly enhanced the proliferation of UM cells, and this effect was efficiently blocked by the FGFR1/2/3 inhibitor BGJ398. Our study indicates that FGF9 released by HSCs promotes the tumorigenicity of UM cells, and thus suggests FGF9 as a promising therapeutic target in hepatic metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias Uveais , Proliferação de Células , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Melanoma , Compostos de Fenilureia , Pirimidinas , Neoplasias Uveais/metabolismo
8.
J Tradit Chin Med ; 42(4): 530-538, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35848969

RESUMO

OBJECTIVE: To explore biomarkers of Pien Tze Huang that ameliorated the symptoms of hepatic fibrosis. METHODS: Two groups of carbon tetrachloride-induced hepatic fibrosis (HF) mice model were constructed in our study: one group received PZH treatment and another group received no treatment. We performed this study to investigate the role of PZH in the regulation process of hepatic fibrosis. RESULTS: We identified 31 down-regulated and 39 up-regulated miRNAs using small RNA-seq analysis. Combining RNA-Seq data analysis, our study revealed 7 significant target genes (Sp4, Slc2a6, Tln2, Hmga2, Ank3, Pax9, Fgf9). The results of real-time quantitative polymerase chain reaction analysis suggested that the expression level of 6 genes (Sp4, Tln2, Hmga2, Ank3, Pax9, Fgf9) were down-regulated compared to control group. On the other hand, the expression level of Slc2a6 appeared to be up-regulated. The protein mass spectrometry showed that PZH group had lower protein expression of Tln2 compared to control group. CONCLUSION: We identified 7 genes that were significantly related to PZH response in HF mice using multiple conjoint analysis methods. These genes could participate in underlying regulation mechanism of hepatic fibrosis during PZH treatment.


Assuntos
Tetracloreto de Carbono , Medicamentos de Ervas Chinesas , Animais , Biomarcadores Farmacológicos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Camundongos , Talina
9.
Front Psychiatry ; 13: 788677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546939

RESUMO

Preclinical and clinical studies have suggested that fibroblast growth factor (FGF) system contributed to the onset and development of schizophrenia (SCZ). However, there was no strong clinical evidence to link an individual FGF with SCZ. In this study, we aim to measure blood FGF9 levels in the patients with SCZ with and/or without medication, and test whether FGF9 has a potential to be a biomarker for SCZ. We recruited 130 patients with SCZ and 111 healthy individuals, and the ELISA and qRT-PCR assays were used to measure serum FGF9 levels in the participants. ELISA assay demonstrated that serum FGF9 protein levels were dramatically reduced in first-episode, drug-free patients, but not in chronically medicated patients when compared to healthy control subjects. Further analysis showed that treatment of the first-episode, drug-free SCZ patients with antipsychotics for 8 weeks significantly increased the serum FGF9 levels. In addition, we found that blood FGF9 mRNA levels were significantly lower in first-onset SCZ patients than controls. Under the receiver operating characteristic curve, the optimal cutoff values for FGF9 protein level as an indicator for diagnosis of drug-free SCZ patients was projected to be 166.4 pg/ml, which yielded a sensitivity of 0.955 and specificity of 0.86, and the area under the curve was 0.973 (95% CI, 0.954-0.993). Furthermore, FGF9 had good performance to discriminate between drug-free SCZ patients and chronically medicated patients, the optimal cutoff value for FGF9 concentration was projected to be 165.035 pg/ml with a sensitivity of 0.86 and specificity of 0.919, and the AUC was 0.968 (95% CI, 0.944, 0.991). Taken together, our results for the first time demonstrated the dysregulation of FGF9 in SCZ, and FGF9 has the potential to be served as a biomarker for SCZ.

10.
Amino Acids ; 54(7): 1069-1081, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35304640

RESUMO

Sepsis-induced fulminant hepatitis (FH) is a fatal syndrome that has a worse prognosis in clinical practice. Hence, seeking effective agents for sepsis-induced FH treatment is urgently needed. Fibroblast growth factors (FGFs) are vital for tissue homeostasis and damage repair in various organs including the liver. Our study aims to investigate the protective effects and potential mechanisms of FGF9 on lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced FH in mice. We found that pre-treatment with FGF9 exhibited remarkable hepaprotective effects on liver damage caused by LPS/D-Gal, as manifested by the concomitant decrease in mortality and serum aminotransferase activities, and the attenuation of hepatocellular apoptosis and hepatic histopathological abnormalities in LPS/D-Gal-intoxicated mice. We further found that FGF9 alleviated the infiltration of neutrophils into the liver, and decreased the serum levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in LPS/D-Gal-challenged mice. These effects can be explained at least in part by the inhibition of NF-κB signaling pathway. Meanwhile, FGF9 enhanced the antioxidative defense system in mice livers by upregulating the expression of NRF-2-related antioxidative enzymes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H: quinone oxidoreductase 1 (NQO-1), and heme oxygenase-1 (HO-1). These data indicate that FGF9 represents a promising therapeutic drug for ameliorating sepsis-induced FH via its anti-apoptotic and anti-inflammatory capacities.


Assuntos
Necrose Hepática Massiva , Sepse , Animais , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Galactosamina/metabolismo , Galactosamina/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Sepse/tratamento farmacológico , Sepse/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Exp Ther Med ; 23(2): 131, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34970354

RESUMO

Ulcerative colitis (UC) is a significant threat to human life. Hence, there is an urgent requirement to understand the mechanism of UC progression and to develop novel therapeutic interventions for the treatment of UC. The present study aimed to evaluate the potential significance of long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) in the progression of UC. NEAT1 expression was detected in colonic mucosa samples from patients with UC and healthy individuals. Fetal human cells (FHCs) were treated with different concentrations of lipopolysaccharides (LPS) to induce UC-caused inflammatory injury, and the effects of NEAT1 knockdown were investigated on cytokines production, cell apoptosis and viability. Furthermore, the correlation and regulation between NEAT1 and microRNA (miRNA/miR)-603 and the fibroblast growth factor 9 (FGF9) pathway were investigated. The results demonstrated that NEAT1 expression was upregulated in the colonic mucosa tissues of patients with UC. In addition, significant cell injury was observed in FHCs treated with different concentrations of LPS, with decreased cell viability, and increased apoptosis and inflammatory cytokines production. Conversely, NEAT1 knockdown significantly reduced LPS-induced cell injury in FHCs, which was achieved through negative regulation of miR-603 expression. Furthermore, FGF9 was negatively regulated by miR-603, and thus, FGF9 was identified as a potential target of miR-603. Notably, FGF9 knockdown reversed the suppressing effects of miR-603 on LPS-induced injury in FHCs. Taken together, the results of the present study suggest that NEAT1 contributes to the development of UC by regulating the miR-603/FGF9 pathway.

12.
Anim Sci J ; 92(1): e13627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477270

RESUMO

It has been found that fibroblast growth factor receptor (FGF-FGFR) signaling can regulate the expression of adipocyte differentiation genes. FGF9 is one of the members of FGFs that mainly binds receptors FGFR2 and FGFR3. FGF9 is highly expressed in the adipose tissue of humans and mice, but there are few reports on the role of FGF9 in goat intramuscular adipocyte differentiation. Therefore, this study explored the effect of FGF9 on adipocyte differentiation through cell culture, interference, and overexpression. The expression of receptors FGFR1-FGFR4 in adipocyte differentiation and their effects on differentiation were detected to screen receptor gene of FGF9. Finally, the interaction between FGF9 and the receptor was tested by cotransfection. Our results showed that FGF9 interacts with FGFR2 to inhibit goat intramuscular adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma (PPARγ) and preadipocyte factor 1 (Pref1), which is a data support for subsequent pathway research.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Cabras , Adipócitos , Animais , Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos/genética , Cabras/genética , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
13.
Mol Med Rep ; 24(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34490480

RESUMO

Non­coding RNAs serve essential roles in regulating mRNA and protein expression and dysregulation of non­coding RNAs participates in a variety of types of cancer. microRNAs (miRNAs/miRs), which are 21­24 nucleotides non­coding RNAs, have been shown to be important for the development of gastric cancer (GC). However, the role of miR­486­5p in GC remains to be elucidated. The present study found that miR­486­5p was downregulated in GC tissues. Comparing with gastric normal cells GES­1, GC cells, including MKN­45, AGS, HGC27 and MKN74, had reduced abundance of miR­486­5p transcript. CCK8 and colony formation assays demonstrated that GC cell growth and proliferation were enhanced by miR­486­5p inhibitors and were suppressed by miR­486­5p mimics. miR­486­5p also suppressed cell cycle process and migration and promoted apoptosis in GC cells, as verified by propidium iodide (PI) staining, Transwell assay and PI/Annexin V staining. miR­486­5p downregulated fibroblast growth factor 9 (FGF9) through combining to its 3'untranslated region. Overexpression of FGF9 accelerated the growth and proliferation of GC cells. The expression of miR­486­5p was negatively associated with FGF9 mRNA expression in GC samples. These results revealed that miR­486­5p was a tumor suppressor in GC. Downregulation of FGF9 contributed to the role of miR­486­5p in GC.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos
14.
Front Physiol ; 12: 653040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959039

RESUMO

Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9-/- mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9-/- mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel's cartilage and around the mandibular bone in Fgf9-/- mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9-/- mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.

15.
Spine J ; 21(6): 1010-1020, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33577925

RESUMO

BACKGROUND CONTEXT: Ligamentum flavum (LF) hypertrophy plays a dominant role in lumbar spinal stenosis (LSS). A previous study found that fibroblast growth factor 9 (FGF9) was upregulated with mechanical stress in rabbit LF. However, the expression and function of FGF9 are not well understood in human LF. PURPOSE: To evaluate FGF9 expression and function in human LF with and without hypertrophy. STUDY DESIGN: This study employed a basic research study design utilizing human LF tissue for histological analyses. PATIENT SAMPLES: Hypertrophied LF tissue sample from patients with LSS, and nonhypertrophied (control) LFs from patients with lumbar disc herniation or other diseases were obtained during surgery. METHODS: LF specimens were histologically analyzed for FGF9 and vascular endothelial growth factor A (VEGF-A) by immunohistochemistry. The number of total and FGF9 immuno-positive cells and blood vessels were counted and compared between LF with and without hypertrophy. For functional analysis, the effect of FGF9 on cell proliferation and migration was examined using a primary cell culture of human LF. RESULTS: Histological studies revealed that the total cell number was significantly higher in the LF of patients with LSS than in the LF of control patients. Immunohistochemistry showed that the percentage of FGF9-positive cells was significantly higher in the LF of patients with LSS than in the controls, and it positively correlated with patients' age, regardless of disease. Double immune-positive cells for FGF9 and VEGF-A were often observed in vascular endothelial cells and fibroblasts in the fibrotic area of hypertrophied LF, and the number of double positive vessels was significantly higher in LF of LSS patients than in the LF of controls. Primary cell culture of human LF revealed that FGF9 promoted the proliferation and migration of LF cells. CONCLUSION: The present study demonstrated that FGF9 expression is highly upregulated in hypertrophied human LF. FGF9 potentially plays a pivotal role in the process of hypertrophy of LF, which is associated with mechanical stress, through cell proliferation and migration. CLINICAL SIGNIFICANCE: The results from this study partially reveal the molecular mechanisms of LF hypertrophy and suggest that FGF9 may be involved in the process of LF degeneration in elderly patients.


Assuntos
Ligamento Amarelo , Estenose Espinal , Idoso , Animais , Células Endoteliais , Fator 9 de Crescimento de Fibroblastos , Humanos , Hipertrofia , Vértebras Lombares , Coelhos , Fator A de Crescimento do Endotélio Vascular
16.
Mol Neurobiol ; 58(5): 2396-2406, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421017

RESUMO

Proper development of neuronal cells is important for brain functions, and impairment of neuronal development may lead to neuronal disorders, implying that improvement in neuronal development may be a therapeutic direction for these diseases. Huntington's disease (HD) is a neurodegenerative disease characterized by impairment of neuronal structures, ultimately leading to neuronal death and dysfunctions of the central nervous system. Based on previous studies, fibroblast growth factor 9 (FGF9) may provide neuroprotective functions in HD, and FGFs may enhance neuronal development and neurite outgrowth. However, whether FGF9 can provide neuronal protective functions through improvement of neuronal morphology in HD is still unclear. Here, we study the effects of FGF9 on neuronal length in HD and attempt to understand the related working mechanisms. Taking advantage of striatal cell lines from HD knock-in mice, we found that FGF9 increases total neuronal length and upregulates several structural and synaptic proteins under HD conditions. In addition, activation of nuclear factor kappa B (NF-kB) signaling by FGF9 was observed to be significant in HD cells, and blockage of NF-kB leads to suppression of these structural and synaptic proteins induced by FGF9, suggesting the involvement of NF-kB signaling in these effects of FGF9. Taken these results together, FGF9 may enhance total neuronal length through upregulation of NF-kB signaling, and this mechanism could serve as an important mechanism for neuroprotective functions of FGF9 in HD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fator 9 de Crescimento de Fibroblastos/farmacologia , Doença de Huntington/metabolismo , NF-kappa B/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Cancer Lett ; 503: 138-150, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33503448

RESUMO

The androgen receptor (AR) is expressed in prostate fibroblasts in addition to normal prostate epithelial cells and prostate cancer (PCa) cells. Moreover, AR activation in fibroblasts dramatically influences prostate cancer (PCa) cell behavior. Androgen deprivation leads to deregulation of AR downstream target genes in both fibroblasts and PCa cells. Here, we identified LIM domain only 2 (LMO2) as an AR target gene in prostate fibroblasts using ChIP-seq and revealed that LMO2 can be repressed directly by AR through binding to androgen response elements (AREs), which results in LMO2 overexpression after AR deactivation due to normal prostate fibroblasts to cancer-associated fibroblasts (CAFs) transformation or androgen deprivation therapy. Next, we investigated the mechanisms of LMO2 overexpression in fibroblasts and the role of this event in non-cell-autonomous promotion of PCa cells growth in the androgen-independent manner through paracrine release of IL-11 and FGF-9. Collectively, our data suggest that AR deactivation deregulates LMO2 expression in prostate fibroblasts, which induces castration resistance in PCa cells non-cell-autonomously through IL-11 and FGF-9.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzamidas/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Proteínas com Domínio LIM/metabolismo , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Androgênicos/metabolismo , Regulação para Cima , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sequenciamento de Cromatina por Imunoprecipitação , Fator 9 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-11/metabolismo , Masculino , Camundongos , Comunicação Parácrina , Cultura Primária de Células , Ativação Transcricional/efeitos dos fármacos
18.
Psychopharmacology (Berl) ; 238(2): 501-516, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33161473

RESUMO

RATIONALE: The pathway of adiponectin (ADPN)/fibroblast growth factor 9 (FGF9) was recently thought as a key role in the development of depression. ADPN is crucially regulated by peroxisome proliferator-activated receptor-gamma (PPAR-γ). Natural material carnosic acid (CA) has been applied for therapeutics of mental disorders. OBJECTIVES: To evaluate the antidepressive effect of CA in stress-treated mice and define whether its effects is involved in the regulation of ADPN/FGF9 pathway. METHODS: In vivo study, the levels of ADPN and FGF9 in both serum and hippocampus tissues, the expressions of ADPN receptor 2 (AdipoR2) in hippocampus and PPAR-γ in abdominal adipose, as well as the pathological changes of hippocampus were determined in 28-day period of chronic unpredictable mild stress (CUMS)-induced depression model of male ICR (Institute of Cancer Research) mice or adipo-/- mice. In vitro study, the level of ADPN and the mRNA expressions of both ADPN and PPAR-γ were determined in mouse 3T3-L1 preadipocytes. RESULTS: In vivo study, treatment with CA (50 or 100 mg/kg per day) for 21 days markedly suppressed depressive-like behaviors, the elevating levels of FGF9 and decreasing levels of ADPN in both serum and hippocampus tissues, the downregulating protein and mRNA expressions of AdipoR2 in hippocampus and PPAR-γ in abdominal adipose, as well as the pathological injury of hippocampus induced by CUMS in male ICR mice. The antidepressive effects of CA were markedly attenuated in male CUMS-treated adipo-/- mice. In vitro study, incubation with CA (3-30 µmol/L) for 24 h could concentration-dependently upregulate the mRNA expressions of both PPAR-γ and ADPN as well as increase the level of ADPN. The experiments using PPAR-γ-specific inhibitor GW9662 and transient transfection with mutated PPAR-γ-binding site promotor constructs showed that the activation of PPAR-γ mediated CA-induced ADPN expression in adipocytes. CONCLUSIONS: CA could significantly improve stress-induced depressive disorder, which may be related to regulating the dysfunction of ADPN-FGF9 pathway via activating PPAR-γ in adipocytes.


Assuntos
Abietanos/farmacologia , Adiponectina/genética , Antidepressivos/farmacologia , Depressão/prevenção & controle , Fator 9 de Crescimento de Fibroblastos/genética , PPAR gama/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , PPAR gama/metabolismo , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Regulação para Cima
19.
Life Sci ; 267: 118952, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383048

RESUMO

AIMS: Huntington's disease (HD) is a neurodegenerative disease that causes deficits in neurite outgrowth, which suggests that enhancement of neurite outgrowth is a potential direction by which to improve HD. Our previous publications showed that fibroblast growth factor 9 (FGF9) provides anti-apoptosis and anti-oxidative functions in striatal cell models of HD through the extracellular signal-regulated kinases (ERK) pathway, and FGF9 also stimulates cytoskeletons to enhance neurite outgrowth via nuclear factor kappa B (NF-kB) signaling. In this study, we further demonstrate the importance of the ERK pathway for the neurite outgrowth induced by FGF9 in HD striatal models. MATERIALS AND METHODS: FGF9 was treated with ERK (U0126) or NF-kB (BAY11-7082) inhibitors in STHdhQ7/Q7 and STHdhQ111/Q111 striatal knock-in cell lines to examine neurite outgrowth, cytoskeletal markers, and synaptic proteins via immunofluorescence staining and Western blotting. NF-kB activity was analyzed by NF-kB promoter reporter assay. KEY FINDINGS: Here, we show that suppression of ERK signaling significantly inhibits FGF9-induced neurite outgrowth, cytoskeletal markers, and synaptic proteins in HD striatal cells. In addition, we also show suppression of ERK signaling significantly decreases FGF9-induced NF-kB activation, whereas suppression of NF-kB does not decrease FGF9-induced ERK signaling. These results suggest that FGF9 activates ERK signaling first, stimulates NF-kB upregulation, and then enhances neurite outgrowth in HD striatal cells. SIGNIFICANCE: We elucidate the more detailed mechanisms of neurite outgrowth enhanced by FGF9 in these HD striatal cells. This study may provide insights into targeting neurite outgrowth for HD therapy.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuritos/metabolismo , Animais , Butadienos/farmacologia , Linhagem Celular , Células Cultivadas , Corpo Estriado/metabolismo , Inibidores Enzimáticos/farmacologia , Fator 9 de Crescimento de Fibroblastos/antagonistas & inibidores , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neuritos/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Nitrilas/farmacologia , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Sulfonas/farmacologia
20.
Technol Cancer Res Treat ; 19: 1533033820957001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885717

RESUMO

The aberrant expression of microRNA is an important regulator in the tumorigenesis of non-small cell lung cancer. In this study, we found that miR-499a-5p was notably downregulated in non-small cell lung cancer tissues and cell lines. Decreased miR-499a-5p expression was associated with larger tumor size and higher TNM stage. Non-small cell lung cancer patients with low expression of miR-499a-5p exhibited a worse overall survival rate compared with those patients with high expression of miR-499a-5p. Ectopic expression of miR-499a-5p significantly suppressed non-small cell lung cancer cell proliferation and colony formation, and hampered cell cycle at G0/G1 phase in vitro. Conversely, knockdown of miR-499a-5p promoted non-small cell lung cancer cell proliferation and colony formation, and induced cell cycle at S phase. Furthermore, in vivo experiments revealed that overexpression of miR-499a-5p inhibited the tumor formation in a nude mouse xenograft model. Mechanistic studies showed that fibroblast growth factor 9 was a direct target gene of miR-499a-5p. miR-499a-5p directly bound to fibroblast growth factor 9 mRNA 3'-UTR, therefore led to the reduction in fibroblast growth factor 9 protein expression. Finally, rescue experiments confirmed that silencing of fibroblast growth factor 9 partially reversed the phenotypes of miR-499a-5p knockdown on non-small cell lung cancer cell proliferation. In conclusion, our study demonstrates that downregulation of miR-499a-5p predicts a worse prognosis of patients with non-small cell lung cancer and restrains the tumorigenesis by targeting fibroblast growth factor 9. These findings may provide valuable clues for the future development of therapeutic strategies against this cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Fator 9 de Crescimento de Fibroblastos/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Fator 9 de Crescimento de Fibroblastos/biossíntese , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/biossíntese , Transplante de Neoplasias , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA