Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Front Public Health ; 12: 1367805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247230

RESUMO

Background: University emergencies, garnering significant public attention and shaping network opinions, pose a crucial challenge to universities' management and societal stability. Hence, network public opinion on university emergencies is a vital issue. Nevertheless, the underlying mechanism has not been fully explored and cannot be efficiently controlled. This study aimed to explore the formation pattern of network public opinion on university emergencies, analyze its causes, and provide scientific governance strategies for coping with this issue. Methods: Based on a sample set of 204 cases from the Zhiwei Data Sharing Platform, this study classifies network public opinion on university emergencies into six types and visually analyzes their characteristics: time distribution, subject, duration, and emotion. By integrating the theory of the network public opinion field, this study develops a network public opinion field model of university emergencies to reveal its formation pattern. Furthermore, it analyzes the causes of network public opinion on university emergencies from the perspective of the public opinion lifecycle and proposes corresponding governance strategies. Results: The sample consisted of 304 cases of real-life public opinion, and the visualization results show that public opinion on mental health and teacher-student safety constitutes the predominant types, accounting for 83.3%. High-occurrence subjects are public universities (88.24%) and students (48%). The most frequent months are July and December. 90.20% of the public opinions have a lifespan of less than 19 days, with an impact index ranging from 40 to 80. The public's emotional response to different types of public opinion varies, with negative emotions dominating. Conclusion: This study provides novel insights for understanding their formation and dissemination. It also provides practical implications for relevant departments to govern network public opinion on university emergencies.


Assuntos
Emergências , Opinião Pública , Humanos , Universidades , Masculino , Feminino , Adulto , Estudantes/psicologia , Inquéritos e Questionários
2.
Front Comput Neurosci ; 18: 1335130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286332

RESUMO

A compact description of the frequency structure and topography of human alpha-band rhythms is obtained by use of the first four brain activity eigenmodes previously derived from corticothalamic neural field theory. Just two eigenmodes that overlap in frequency are found to reproduce the observed topography of the classical alpha rhythm for subjects with a single, occipitally concentrated alpha peak in their electroencephalograms. Alpha frequency splitting and relative amplitudes of double alpha peaks are explored analytically and numerically within this four-mode framework using eigenfunction expansion and perturbation methods. These effects are found to result primarily from the different eigenvalues and corticothalamic gains corresponding to the eigenmodes. Three modes with two non-overlapping frequencies suffice to reproduce the observed topography for subjects with a double alpha peak, where the appearance of a distinct second alpha peak requires an increase of the corticothalamic gain of higher eigenmodes relative to the first. Conversely, alpha blocking is inferred to be linked to a relatively small attention-dependent reduction of the gain of the relevant eigenmodes, whose effect is enhanced by the near-critical state of the brain and whose sign is consistent with inferences from neural field theory. The topographies and blocking of the mu and tau rhythms within the alpha-band are explained analogously via eigenmodes. Moreover, the observation of three rhythms in the alpha band is due to there being exactly three members of the first family of spatially nonuniform modes. These results thus provide a simple, unified description of alpha band rhythms and enable experimental observations of spectral structure and topography to be linked directly to theory and underlying physiology.

3.
Heliyon ; 10(16): e36188, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253172

RESUMO

The Lithium-chromium phosphate Li3Cr2(PO3)4 sample was synthesized via the solid-state reaction method. The morphological integrity and chemical homogeneity were verified by energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM). Infrared and Raman patterns were also analyzed. Optical absorption spectrum analysis, conducted within the range of 10000 cm-1 to 30000 cm-1 at room temperature, yielded some optical parameters (Eg, Eu, δ , k, n). The Neuhauser model is used to interpret the interference dip which was on the absorption spectrum of Li3Cr2(PO3)4. The Fourier transform of the autocorrelation function leads to the Zero Phonon Lines of the observed absorption energies. The electronic structure of Cr3+ (3d (Huang et al., 2009) 33) ions in Li3Cr2(PO3)4 was calculated using Racah method, which allowed for precise calculations of Racah and crystal-field parameters. The results showed good agreement between the theoretical and experimental energy levels.

4.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273508

RESUMO

The analysis of the impact of the star polymer topology on depletion interaction potentials, depletion forces, and monomer density profiles is carried out analytically using field theory methods and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction potentials and the dimensionless depletion forces for a dilute solution of ideal star polymers with three and five legs (arms) in a Θ-solvent confined in a slit between two parallel walls with repulsive surfaces and for the case where one of the surfaces is repulsive and the other inert are obtained. Furthermore, the dimensionless layer monomer density profiles for ideal star polymers with an odd number (f˜ = 3, 5) of arms immersed in a dilute solution of big colloidal particles with different adsorbing or repelling properties in respect of polymers are calculated, bearing in mind the Derjaguin approximation. Molecular dynamic simulations of a dilute solution of star-shaped polymers in a good solvent with N = 901 (3 × 300 + 1 -star polymer with three arms) and 1501 (5 × 300 + 1 -star polymer with five arms) beads accordingly confined in a slit with different boundary conditions are performed, and the results of the monomer density profiles for the above-mentioned cases are obtained. The numerical calculation of the radius of gyration for star polymers with f˜ = 3, 5 arms and the ratio of the perpendicular to parallel components of the radius of gyration with respect to the wall orientation for the above-mentioned cases is performed. The obtained analytical and numerical results for star polymers with an odd number (f˜ = 3, 5) of arms are compared with our previous results for linear polymers in confined geometries. The acquired results show that a dilute solution of star polymer chains can be applied in the production of new functional materials, because the behavior of these solutions is strictly correlated with the topology of polymers and also with the nature and geometry of confined surfaces. The above-mentioned properties can find extensive practical application in materials engineering, as well as in biotechnology and medicine for drug and gene transmission.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Solventes/química , Coloides/química
5.
Methods Enzymol ; 703: 29-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261000

RESUMO

Non-heme iron enzymes play key roles in antibiotic, neurotransmitter, and natural product biosynthesis, DNA repair, hypoxia regulation, and disease states. These enzymes had been refractory to traditional bioinorganic spectroscopic methods. Thus, we developed variable-temperature variable-field magnetic circular dichroism (VTVH MCD) spectroscopy to experimentally define the excited and ground ligand field states of non-heme ferrous enzymes (Solomon et al., 1995). This method provides detailed geometric and electronic structure insight and thus enables a molecular level understanding of catalytic mechanisms. Application of this method across the five classes of non-heme ferrous enzymes has defined that a general mechanistic strategy is utilized where O2 activation is controlled to occur only in the presence of all cosubstrates.


Assuntos
Domínio Catalítico , Dicroísmo Circular , Dicroísmo Circular/métodos , Ferro/química , Ferro/metabolismo , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Oxigênio/metabolismo , Oxigênio/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo
6.
Behav Sci (Basel) ; 14(9)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39335954

RESUMO

Social commerce blurs the boundary between online social interaction and online shopping. The emergence of video streams introduces novel marketing modalities to social commerce. However, there is a paucity of comprehensive studies investigating the impact of emerging marketing techniques such as short videos and live streaming on consumer purchase intention. This study employs Bourdieu's conceptual framework to construct a Field Theory-based model, investigating the impact of atmospheric and capital characteristics of social commerce platforms on consumer purchase intention through affective and rational pathways, respectively. A survey involving 515 Chinese social commerce consumers demonstrates that atmospheric characteristics (emotion and social presence) and capital characteristics (information quality and quantity) in video streams enhance similarity and power. Both similarity and power are associated with an increase in consumer purchase intention. This study validates the dual-path influence of social commerce characteristics and discusses theoretical and managerial implications.

7.
Molecules ; 29(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339507

RESUMO

It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for the nuclear motion. This approach is known as ab initio molecular dynamics. In contrast, the simulation of excited-state reactions at this level of theory is significantly more difficult. It turns out that the self-consistent solution of the Kohn-Sham equations is not easily reached in excited-state simulations. The first program that solved this problem was the Car-Parrinello molecular dynamics code, using restricted open-shell Kohn-Sham theory. Meanwhile, there are alternatives, most prominently the Q-Chem code, which widens the range of applications. The present study investigates the suitability of both codes for the molecular dynamics simulation of excited-state motion and presents applications to photoreactions.

8.
Entropy (Basel) ; 26(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39330082

RESUMO

Rudolf Haag's Local Quantum Physics (LQP) is an alternative framework to conventional relativistic quantum field theory for combining special relativity and quantum theory based on first principles, making it of great interest for the purposes of conceptual analysis despite currently being relatively limited as a tool for making experimental predictions. In LQP, the elementary particles are defined as species of causal link between interaction events, together with which they comprise its most fundamental entities. This notion of particle has yet to be independently assessed as such. Here, it is captured via a set of propositions specifying particle characteristics and then compared to previous particle notions. Haag's particle differs decisively with respect to mechanical intuitions about particles by lacking, among other things, even an approximate independent space-time location. This notion is thus found to differ greatly even from those of relativistic quantum mechanics and quantum field theory, which have been applied to the known elementary particles.

9.
Micromachines (Basel) ; 15(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337811

RESUMO

For vertical interconnect access (VIA) in three-dimensional (3D) structure chips, including those with high bandwidth memory (HBM), shrinking contact holes (C/Hs) using the resist flow process (RFP) represents the most promising technology for low-k1 (where CD=k1λ/NA,CD is the critical dimension, λ is wavelength, and NA is the numerical aperture). This method offers a way to reduce dimensions without additional complex process steps and is independent of optical technologies. However, most empirical models are heuristic methods and use linear regression to predict the critical dimension of the reflowed structure but do not account for intermediate shapes. In this research, the resist flow process (RFP) was modeled using the evolution method, the finite-element method, machine learning, and deep learning under various reflow conditions to imitate experimental results. Deep learning and machine learning have proven to be useful for physical optimization problems without analytical solutions, particularly for regression and classification tasks. In this application, the self-assembly of cylinder-forming block copolymers (BCPs), confined in prepatterns of the resist reflow process (RFP) to produce small contact hole (C/H) dimensions, was described using the self-consistent field theory (SCFT). This research paves the way for the shrink modeling of the enhanced resist reflow process (RFP) for random contact holes (C/Hs) and the production of smaller contact holes.

10.
Chemphyschem ; : e202400650, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133572

RESUMO

We present a comprehensive mean-field model that takes into account the key components of modern electrical double layer theory at the interface between an electrode and an electrolyte solution. The model considers short-range specific interactions between different species, including electrode-ion repulsion, the hydration of ions, dielectric saturation of solvent (water), and excluded volume (steric) interactions between species. By solving a modified Poisson-Boltzmann equation and using the appropriate results of quantum chemistry calculations on the hydration of ions, we can accurately approximate the differential capacitance profiles of aqueous electrolyte solutions at the boundary with a silver electrode. The specific interactions between the ions and the electrodes in the systems under consideration are assumed to be significantly weaker than their Coulomb interactions. A novel aspect of our research is the investigation of the impact of short-range ion-water interactions on the differential capacitance, which provides new insights into the behavior of the electrical double layer. This model holds the potential to be useful for electrochemical engineers working on the development of supercapacitors and related electrochemical energy storage devices. It serves as a basis for future modeling of electrolyte systems on real electrodes, especially in scenarios where chemical ion-electrode interactions are significant.

11.
PeerJ ; 12: e17784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148681

RESUMO

Heterodonty and complex molar morphology are important characteristics of mammals acquired during the evolution of early mammals from non-mammalian synapsids. Some non-mammalian synapsids had only simple, unicuspid teeth, whereas others had complex, multicuspid teeth. In this study, we reconstructed the ancestral states of tooth morphological complexity across non-mammalian synapsids to show that morphologically complex teeth evolved independently multiple times within Therapsida and that secondary simplification of tooth morphology occurred in some non-mammalian Cynodontia. In some mammals, secondary evolution of simpler teeth from complex molars has been previously reported to correlate with an anterior shift of tooth eruption position in the jaw, as evaluated by the dentition position relative to the ends of component bones used as reference points in the upper jaw. Our phylogenetic comparative analyses showed a significant correlation between an increase in tooth complexity and a posterior shift in the dentition position relative to only one of the three specific ends of component bones that we used as reference points in the upper jaw of non-mammalian synapsids. The ends of component bones depend on the shape and relative area of each bone, which appear to vary considerably among the synapsid taxa. Quantification of the dentition position along the anteroposterior axis in the overall cranium showed suggestive evidence of a correlation between an increase in tooth complexity and a posterior shift in the dentition position among non-mammalian synapsids. This correlation supports the hypothesis that a posterior shift of tooth eruption position relative to the morphogenetic fields that determine tooth form have contributed to the evolution of morphologically complex teeth in non-mammalian synapsids, if the position in the cranium represents a certain point in the morphogenetic fields.


Assuntos
Evolução Biológica , Filogenia , Erupção Dentária , Dente , Animais , Erupção Dentária/fisiologia , Dente/anatomia & histologia , Fósseis , Arcada Osseodentária/anatomia & histologia
12.
Entropy (Basel) ; 26(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39202091

RESUMO

We develop an action principle for producing a single-fluid two-constituent system with dissipation in general relativity. The two constituents in the model are particles and entropy. The particle flux creation rate is taken to be zero, while the entropy creation rate is non-zero. Building on previous work, it is demonstrated that a new term (the proper time derivative of the matter space "metric") is required in the Lagrangian in order to produce terms typically associated with bulk and shear viscosity. Equations of motion, entropy creation rate, and energy-momentum-stress tensor are derived. Using an Onsager approach of identifying thermodynamic "forces" and "fluxes", a model is produced which delivers the same entropy creation rate as the standard, relativistic Navier-Stokes equations. This result is then contrasted with a model generated in the spirit of the action principle, which takes as its starting point a specific Lagrangian and then produces the equations of motion, entropy creation rate, and energy-momentum-stress tensor. Unlike the equations derived from Onsager reasoning, where the analogs of the bulk and shear viscosity coefficients are prescribed "externally", we find that the forms of the coefficients in the second example are a direct result of the specified Lagrangian. Furthermore, the coefficients are shown to satisfy evolution equations along the fluid worldline, also a product of the specific Lagrangian.

13.
J Comput Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012324

RESUMO

The electronic structure of the strongly correlated electron system plutonium hexaboride is studied by using single-particle approximations and a many-body approach. Imaginary components of impurity Green's functions show that 5fj=5/2 and 5fj=7/2 manifolds are in conducting and insulating regimes, respectively. Quasi-particle weights and their ratio suggest that the intermediate coupling mechanism is applicable for Pu 5f electrons, and PuB6 might be in the orbital-selective localized state. The weighted summation of occupation probabilities yields the interconfiguration fluctuation and average occupation number of 5f electrons n5f ~ 5.101. The interplay of 5f-5f correlation, spin-orbit coupling, Hund's exchange interaction, many-body transition of 5f configurations, and final state effects might be responsible for the quasiparticle multiplets in electronic spectrum functions. Prominent characters in the density of state, such as the coexistence of atomic multiplet peaks in the vicinity of the Fermi level and broad Hubbard bands in the high-lying regime, suggest that PuB6 could be identified as a Racah material. Finally, the quasiparticle band structure is also presented.

14.
Methods Enzymol ; 701: 425-455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025578

RESUMO

Adhesion of cell membranes involves multi-scale phenomena, ranging from specific molecular binding at Angstrom scale all the way up to membrane deformations and phase separation at micrometer scale. Consequently, theory and simulations of cell membrane adhesion require multi-scale modeling and suitable approximations that capture the essential physics of these phenomena. Here, we present a mesoscale model for membrane adhesion which we have employed in a series of our recent studies. This model quantifies, in particular, how nanoscale lipid clusters physically affect and respond to the intercellular receptor-ligand binding that mediates membrane adhesion. The goal of this Chapter is to present all details and subtleties of the mean-field theory and Monte Carlo simulations of this mesoscale model, which can be used to further explore physical phenomena related to cell membrane adhesion.


Assuntos
Adesão Celular , Membrana Celular , Método de Monte Carlo , Membrana Celular/química , Membrana Celular/metabolismo , Simulação por Computador , Modelos Biológicos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(29): e2323013121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976737

RESUMO

Sr2IrO4 has attracted considerable attention due to its structural and electronic similarities to La2CuO4, the parent compound of high-Tc superconducting cuprates. It was proposed as a strong spin-orbit-coupled Jeff = 1/2 Mott insulator, but the Mott nature of its insulating ground state has not been conclusively established. Here, we use ultrafast laser pulses to realize an insulator-metal transition in Sr2IrO4 and probe the resulting dynamics using time- and angle-resolved photoemission spectroscopy. We observe a gap closure and the formation of weakly renormalized electronic bands in the gap region. Comparing these observations to the expected temperature and doping evolution of Mott gaps and Hubbard bands provides clear evidence that the insulating state does not originate from Mott correlations. We instead propose a correlated band insulator picture, where antiferromagnetic correlations play a key role in the gap opening. More broadly, our results demonstrate that energy-momentum-resolved nonequilibrium dynamics can be used to clarify the nature of equilibrium states in correlated materials.

16.
J Phys Condens Matter ; 36(43)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029502

RESUMO

Motivated by the recent developments in terahertz spectroscopy using pump-probe setups to study correlated electronic materials, we review the field theoretical formalism to compute finite frequency nonlinear electro-optical responses in centrosymmetric systems starting from basic time dependent perturbation theory. We express the nonlinear current kernel as a sum of several causal response functions. These causal functions cannot be evaluated using perturbative field theory methods, since they are not contour ordered. Consequently, we associate each response function with a corresponding imaginary time ordered current correlation function, since the latter can be factorized using Wick's theorem. The mapping between the response functions and the correlation functions, suitably analytically continued to real frequencies, is proven exactly. We derive constraints satisfied by the nonlinear current kernel and we prove a generalizedf-sum rule for the nonlinear conductivity, all of which are consequences of particle number conservation. The constraints guarantee that the nonlinear static responses are free from spurious divergences. We apply the theory to compute the gauge invariant nonlinear conductivity of a system of noninteracting electrons in the presence of weak disorder. As special cases of this generalized nonlinear response, we discuss its third harmonic and its instantaneous terahertz Kerr signals. The formalism can be used to compute the nonlinear conductivity in symmetry broken phases of electronic systems such as superconductors, density waves and nematic states.

17.
Entropy (Basel) ; 26(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38920504

RESUMO

Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.

18.
Biosystems ; 242: 105259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936537

RESUMO

In this paper we propose a control theory of manipulating holograms in Quantum Brain Dynamics (QBD) involving our subjective experiences, i.e. qualia. We begin with the Lagrangian density in QBD and extend our theory to a hierarchical model involving multiple layers covering the neocortex. We adopt reservoir computing approach or morphological computation to manipulate waveforms of holograms involving our subjective experiences. Numerical simulations performed indicate that the convergence to target waveforms of holograms is realized by external electric fields in QBD in a hierarchy. Our theory can be applied to non-invasive neuronal stimulation of the neocortex and adopted to check whether or not our brain adopts the language of holography. In case the protocol in a brain is discovered and the brain adopts the language of holography, our control theory will be applied to develop virtual reality devices by which our subjective experiences provided by the five senses in the form of qualia are manipulated non-invasively. Then, the information content of qualia might be directly transmitted into our brain without passing through sensory organs.


Assuntos
Encéfalo , Teoria Quântica , Realidade Virtual , Humanos , Encéfalo/fisiologia , Simulação por Computador , Holografia/métodos , Modelos Neurológicos , Neocórtex/fisiologia
19.
J Phys Condens Matter ; 36(35)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38806048

RESUMO

Recently, signatures of superconductivity with critical temperature from 20 to 30 K have been reported in pressured trilayer nickelate La4Ni3O10through a pressure-induced structure transition. Here we explore the evolution of electronic structures and electronic correlations in different phases of La4Ni3O10under corresponding pressure regions, by using density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Similar to bilayer superconductor La3Ni2O7, the electronic bands in superconducting La4Ni3O10are dominated by Ni-3dx2-y2and 3dz2orbits near the Fermi level, in contrast, the inner Ni-O plane in La4Ni3O10generates a doublet hole-pocket Fermi surfaces around the Brillouin-zone corner, meanwhile one branch of the Ni-3dz2bands is pushed very close above the Fermi level, which can induce an electron pocket through small electron doping. The DFT+DMFT simulations suggest that the electronic correlations only give minor modification to the Fermi surfaces, meanwhile the Ni-3dz2and 3dx2-y2states on outer Ni-O layers have considerable greater mass enhancements than on the inner layer. The sensitiveness of electronic structure under doping and unique layer dependence of correlation suggest a distinct superconducting mechanism with respect to bilayer La3Ni2O7. Based on the DFT and DFT+DMFT simulations, we eventually derive a trilayer effective tight-binding model, which can produce rather precise electronic bands and Fermi surfaces, hence can serve as an appropriate model to further study the superconducting mechanism and paring symmetry in trilayer La4Ni3O10.

20.
Stud Hist Philos Sci ; 105: 59-73, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754359

RESUMO

This paper provides a conceptual history of the development of early universe particle physics in the 1970s, focusing on the development of more sophisticated tools for constructing gauge-theories at finite-temperature. I start with a focus on early investigations into spontaneous symmetry restoration, and continue through the development of functional methods up to equilibrium finite-temperature field theory. I argue that the early universe provides an ideal setting for integrated modelling of thermal, gravitational, and particle physics effects due to its relative simplicity. I further argue that the development of finite-temperature field theory played an important secondary role in the rise of the effective field theory worldview, and investigate the status of the analogies between phase transitions in particle physics and condensed matter physics. I find that the division into "formal" versus "physical" analogies is too coarse-grained to understand the important physical developments at play.


Assuntos
Transição de Fase , Física , Física/história , História do Século XX , Temperatura , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA