Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Phys Med Biol ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39357530

RESUMO

OBJECTIVE: In this study, we present a model to correct the progressive post-irradiation darkening of EBT3 films. The model allows for a clinical use of EBT3 using application and calibration films scanned with different post-irradiation times. Approach. The model is a post-irradiation time- and dose-dependent power-law function, projecting the scanned transmittance of application films to the transmittance matching the same post-irradiation time of calibration films. The model was characterized for two EBT3 production lots within the dose range 0.1-12.8 Gy. A first characterization was performed utilizing calibration films scanned repeatedly for 54 days post-irradiation (lot 1), while a fast re-characterization of a second lot used three post-irradiation times (lot 2). For a long-term validation validation of the model, 16 film strips were irradiated at 2 Gy on different time points starting from the day of film calibration up to 43 days afterwards (lot 1). For the multi-dose validation of the model, 8 strips were irradiated with dose levels ranging 0-12 Gy deposited 25 days after the calibration (lot 2). As a proof of principle, the model was applied to four clinical patient-specific quality assurance film measurements with prescribed dose/fraction ranging 2.66 Gy-8 Gy. Main results. The post-irradiation transmittance decreased for higher doses up to -2.5% at 12.8 Gy, and 54 days post-irradiation. With a lot-specific model correction, the mean dose accuracy of validation strips that ranged from initial -3.4% (triple-channel) and -9.90% (blue-channel) reduced to within 3.0% (all colour channels) for doses above 1 Gy. The median dose difference with the planned dose improved from -3.5% to -1.1%, and the 3%/2 mm local gamma ranged from (48.5 - 92.5)% to (81.2 - 99.2)%. .

2.
Med Pr ; 2024 Oct 01.
Artigo em Polonês | MEDLINE | ID: mdl-39351624

RESUMO

BACKGROUND: The paper presents the results of dosimetric measurements routinely performed by the Radiation Protection Department of the Nofer Institute of Occupational Medicine (NIOM) in Lódz in 2022 for people occupationally exposed to X and γ radiation. MATERIAL AND METHODS: The evaluation of the effective dose as part of individual dosimetry was provided using the film or thermoluminescent dosimetry (TLD). Additionally, based exclusively on the TLD method, measurements of the ambient dose equivalent H*(10) and personal dose equivalents Hp(0.07) and Hp(3) were performed. In 2022, the dosimetric service of the Radiological Protection Department of the NIOM covered >30 000 workers employed in >4500 laboratories (mainly health care departments). All measurements were performed in accordance with accredited research procedures (number AB 327). RESULTS: In 2022, the average annual dose of Hp(10) was equal to 0.26 mSv, whereas Hp(0.07) measured using ring and wrist dosimetry was equal to 0.63 mSv and 0.78 mSv, respectively. In turn, the average Hp(3) value was 0.21 mSv. In 2022, there was not a single case of exceeding the annual dose limit among people measured by the NIOM. CONCLUSIONS: The data collected in the "Dosimetry" database of the NIOM and a detailed analysis of annual doses received by people occupationally exposed to ionizing radiation indicate a well-functioning radiological protection system in Poland. Med Pr Work Health Saf. 2024;75(5).

3.
Med Phys ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316455

RESUMO

BACKGROUND: In 2021, a Technical Meeting was hosted by the International Atomic Energy Agency (IAEA) where it was recommended that a standardized method for assessing the accuracy of film dose calculations should be established. PURPOSE: To design an audit that evaluates the accuracy of film dosimetry processes. To propose a framework for identifying out-of-tolerance results and to perform an international pilot study to test the audit design. METHODS: Six members of an international Dosimetry Audit Network (DAN) developed an audit for radiochromic film dosimetry. A single host center provided the materials to each participating DAN member to conduct the audits. Materials included: (1) a set of two irradiated audit films (10 Sq: 10 cm × 10 cm, 15 Sq: 15 cm × 15 cm), (2) a reference calibration film set, and (3) a blank sheet of film. The participants were blinded to the dose and tasked with producing dose maps using their standard film dosimetry process. Average Region-Of-Interest (ROI: 2 cm × 2 cm) dose was measured from the dose maps and compared to the known dose. In the audit, all participants used their local scanning and software protocols. Film calibration was performed in two distinct ways: (1) using a calibration film set which was provided by the host center and (2) using a calibration film set which was locally irradiated. Several variations of the audit were also performed to examine how scanning and software processing can affect film dosimetry results. In the first variation of the audit (VariantA), a set of film scans was processed using five different software solutions. In the second variation of the audit (VariantB), all films were scanned on the same scanner and processed using two in-house software solutions. RESULTS: Taking one film scan from each participant, the standard deviations (1σ) (SD) in the dose returned from the host calibration and returned from the local calibration were ±7.2% and ±6.5% respectively, with variations from -12.4% to 12.9% of the known dose. The larger dose variations in the data set were attributed to the corrections applied for variations in scanner brightness during processing and incorrectly assigned calibration doses. When the raw image data set was processed by an expert user of each software solution (VariantA) the SDs were ±2.7% and ±3.7% for in-house and vendor-based software, respectively. When the films were scanned on a single scanner and processed with the two in-house software solutions (VariantB) the results had a SD of ±2.3%. CONCLUSIONS: An audit has been designed and tested for radiotherapy film dosimetry at an international level. A framework for diagnosing issues within a film dosimetry process has been proposed that could be used to audit centers that use film as a dosimeter. Incorporating quality assurance throughout the film process is important in obtaining accurate and consistent film dosimetry. A better understanding of vendor-based software systems is necessary for users to process accurate and consistent film dosimetry.

4.
Phys Eng Sci Med ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264486

RESUMO

Radiochromic film, evaluated with flatbed scanners, is used for practical radiotherapy QA dosimetry. Film and scanner component effects contribute to the Lateral Response Artefact (LRA), which is further enhanced by light polarisation from both. This study investigates the scanner bed's contribution to LRA and also polarisation from the mirrors for widely used EPSON scanners, as part of broader investigations of this dosimetry method aiming to improve processes and uncertainties. Alternative scanner bed materials were compared on a modified EPSON V700 scanner. Polarisation effects were investigated for complete scanners (V700, V800, on- and off-axis, and V850 on-axis), for a removed V700 mirror system, and independently using retail-quality single mirror combinations simulating practical scanner arrangements, but with varying numbers (0-5) and angles. Some tests had no film present, whilst others included films (EBT3) irradiated to 6 MV doses of 0-11.3 Gy. For polarisation analysis, images were captured by a Canon 7D camera with 50 mm focal length lens. Different scanner bed materials showed only small effects, within a few percent, indicating that the normal glass bed is a good choice. Polarisation varied with scanner type (7-11%), increasing at 10 cm lateral off-axis distance by around a further 6%, and also with film dose. The V700 mirror system showed around 2% difference to the complete scanner. Polarization increased with number of mirrors in the single mirror combinations, to 14% for 4 and 5 mirrors, but specific values depend on angles and mirror quality. Novel film measurement methods could reduce LRA effect corrections and associated uncertainties.

5.
Rep Pract Oncol Radiother ; 29(3): 357-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144269

RESUMO

Background: EBT-XD film specially designed for high dose verifications such as stereotactic treatments. The dose response of the film can be affected by several factors, the curly nature of the film being one of them. In this study this curly nature of the film was investigated for stereotactic body radiotherapy (SBRT) plan verifications. Materials and methods: For this study, 18 SBRT (11 prostate, 3 spines, and 4 lungs) cases were enrolled. For all the cases, VMAT plans were created in the Monaco treatment planning system and plan was delivered in Elekta Versa HD linear accelerator and delivered fluence was captured by EBT-XD films. All films were scanned with and without a compression plate. All the films were analyzed using the single-channel film method using the red channel. Results: A significant difference in the gamma passing rates (GPR) for the films scanned with and without the compression plate was observed. The maximum percentage differences in GPR between using and not using a compression plate were 12.7% for 1% 1 mm, 8.1% for 2% 2 mm, 7.5% for 3% 2 mm, and 5% for 3% 3mm criteria. Similarly, the mean %difference in GPR was 5.8% for 1% 1 mm, 2.4% for 2% 2 mm, 1.6% for 3% 2 mm and 0.96% for 3% 3 mm criteria. Conclusion: The results suggest that placing a compression plate over the film during scanning provided a great advantage in achieving a more accurate gamma passing rate irrespective of gamma criteria.

6.
Front Oncol ; 14: 1421869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099699

RESUMO

Background: Proton minibeam radiation therapy (pMBRT) can deliver spatially fractionated dose distributions with submillimeter resolution. These dose distributions exhibit significant heterogeneity in both depth and lateral directions. Accurate characterization of pMBRT doses requires dosimetry devices with high spatial resolution and a wide dynamic range. Furthermore, the dependency of dosimetric measurements on Linear Energy Transfer (LET), as observed in conventional proton therapy, is also present in pMBRT depth dose measurements. Purpose: This work demonstrates the process of performing comprehensive dosimetric measurements to characterize the pMBRT collimator on a clinical single-gantry proton machine, utilizing commercially available dosimetry devices. Methods: The minibeam collimator is designed to be mounted on the clinical nozzle as a beam-modifying accessory. Three collimators, each with a slit opening of 0.4 mm, are thoroughly evaluated. The center-to-center (c-t-c) distances of the slits for these collimators are 2.8 mm, 3.2 mm, and 4.0 mm, respectively. High spatial resolution dosimetry devices are essential for PMBRT dose characterizations. To meet this requirement, two-dimensional (2D) dose measurement devices, Gafchromic films, are used to measure lateral profiles at various depths. Films are also used for depth dose profile measurements in solid water. Additionally, high-resolution point dose detectors, microDiamond, and Razor diode detectors are employed for lateral profile measurements at various depths. Percent depth dose (PDD) measurements of pMBRT in solid water, with various proton energies, collimators, and air gaps, are performed using Gafchromic films. The film's LET dependency for proton beams is corrected to ensure accurate pMBRT PDD measurements. The Monte Carlo simulation tool TOPAS is utilized to compare and validate all experimental measurements. Results: At depths where LET is not a concern, film dose measurements were consistent with microDiamond and Razor diode point measurements. The point detectors need to be orientated with the thin side aligned to the incoming beam. Comparison of the lateral dose profiles extracted from TOPAS simulations, films, microDiamond, and Razor diode detectors shows a passing rate exceeding 98% in 1D gamma analysis at 3% 0.1 mm criteria.However, when the microDiamond detector is orientated to face the pMBRT beam, its spatial resolution may not be sufficient to capture the peak and valley dose accurately. Nevertheless, an accuracy within 2% can still be achieved when comparing the average dose. The PDD measurements show that the peak valley dose ratio (PVDR) of pMBRT can be altered at different depths with different air gaps using the same collimator or different collimators of different c-t-c distances. Conclusion: Our study demonstrates that comprehensive dose measurements for pMBRT can be conducted using standard clinical dose measurement devices. These measurements are indispensable for guiding and ensuring accurate dose reporting in pre-clinical studies using the pMBRT technique.

7.
Brachytherapy ; 23(5): 549-558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38964977

RESUMO

PURPOSE: High dose-rate (HDR) brachytherapy is integral for the treatment of numerous cancers. Preclinical studies involving HDR brachytherapy are limited. We aimed to describe a novel platform allowing multi-modality studies with clinical HDR brachytherapy and external beam irradiators, establish baseline dosimetry standard of a preclinical orthovoltage irradiator, to determine accurate dosimetric methods. METHODS: A dosimetric assessment of a commercial preclinical irradiator was performed establishing the baseline dosimetry goals for clinical irradiators. A 3D printed platform was then constructed with 14 brachytherapy channels at 1cm spacing to accommodate a standard tissue culture plate at a source-to-cell distance (SCD) of 1 cm or 0.4 cm. 4-Gy CT-based treatment plans were created in clinical treatment planning software and delivered to 96-well tissue culture plates using an Ir192 source or a clinical linear accelerator. Standard calculation models for HDR brachytherapy and external beam were compared to corresponding deterministic model-based dose calculation algorithms (MBDCAs). Agreement between predicted and measured dose was assessed with 2D-gamma passing rates to determine the best planning methodology. RESULTS: Mean (±standard deviation) and median dose measured across the plate for the preclinical irradiator was 423.7 ± 8.5 cGy and 430.0 cGy. Mean percentage differences between standard and MBDCA dose calculations were 9.4% (HDR, 1 cm SCD), 0.43% (HDR, 0.4 cm SCD), and 2.4% (EBRT). Predicted and measured dose agreement was highest for MBDCAs for all modalities. CONCLUSION: A 3D-printed tissue culture platform can be used for multi-modality irradiation studies with great accuracy. This tool will facilitate preclinical studies to reveal biologic differences between clinically relevant radiation modalities.


Assuntos
Braquiterapia , Radiometria , Dosagem Radioterapêutica , Braquiterapia/instrumentação , Braquiterapia/métodos , Humanos , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Impressão Tridimensional , Desenho de Equipamento , Algoritmos
8.
Phys Med ; 124: 103420, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970950

RESUMO

PURPOSE: The purpose of this study is to investigate the dosimetric characteristics of a collimator for minibeam radiotherapy (MBRT) with film dosimetry and Monte Carlo (MC) simulations. The outcome of MBRT with respect to conventional RT using a glioma preclinical model was also evaluated. METHODS: A multi-slit collimator was designed to be used with commercial small animal irradiator. The collimator was built by aligning 0.6 mm wide and 5 mm thick parallel lead leaves at 0.4 mm intervals. Dosimetry characteristics were evaluated by Gafchromic (CG) films and TOPAS Monte Carlo (MC) code. An in vivo experiment was performed using a glioma preclinical model by injecting two million GL261cells subcutaneously and treating with 25 Gy, single fraction, with MBRT and conventional RT. Survival curves and acute radiation damage were measured to compare both treatments. RESULTS: A satisfactory agreement between experimental results and MC simulations were obtained, the measured FWHM and distance between the peaks were respectively 0.431 and 1.098 mm. In vivo results show that MBRT can provide local tumor control for three weeks after RT treatment and a similar survival fraction of open beam radiotherapy. No severe acute effects were seen for the MBRT group. CONCLUSIONS: We developed a minibeam collimator and presented its dosimetric features. Satisfactory agreement between MC and GC films was found with differences consistent with uncertainties due to fabrication and set-up errors. The survival curves of MBRT and open field RT are similar while atoxicity is dramatically lower with MBRT, preliminarily confirming the expected effect.


Assuntos
Glioma , Método de Monte Carlo , Fótons , Glioma/radioterapia , Animais , Fótons/uso terapêutico , Camundongos , Radiometria , Linhagem Celular Tumoral , Dosagem Radioterapêutica , Dosimetria Fotográfica , Radioterapia/métodos , Radioterapia/instrumentação , Neoplasias Encefálicas/radioterapia
9.
J Appl Clin Med Phys ; 25(8): e14373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38696704

RESUMO

PURPOSE: Lateral response artifact (LRA) is caused by the interaction between film and flatbed scanner in the direction perpendicular to the scanning direction. This can significantly affect the accuracy of patient-specific quality assurance (QA) in cases involving large irradiation fields. We hypothesized that by utilizing the central area of the flatbed scanner, where the magnitude of LRA is relatively small, the LRA could be mitigated effectively. This study proposes a practical solution using the image-stitching technique to correct LRA for patient-specific QA involving large irradiation fields. METHODS: Gafchromic™ EBT4 film and Epson Expression ES-G11000 flatbed scanner were used in this study. The image-stitching algorithm requires a spot between adjacent images to combine them. The film was scanned at three locations on a flatbed scanner, and these images were combined using the image-stitching technique. The combined film dose was then calculated and compared with the treatment planning system (TPS)-calculated dose using gamma analysis (3%/2 mm). Our proposed LRA correction was applied to several films exposed to 18 × 18 cm2 open fields at doses of 200, 400, and 600 cGy, as well as to four clinical Volumetric Modulated Arc Therapy (VMAT) treatment plans involving large fields. RESULTS: For doses of 200, 400, and 600 cGy, the gamma analysis values with and without LRA corrections were 95.7% versus 67.8%, 95.5% versus 66.2%, and 91.8% versus 35.9%, respectively. For the clinical VMAT treatment plan, the average pass rate ± standard deviation in gamma analysis was 94.1% ± 0.4% with LRA corrections and 72.5% ± 1.5% without LRA corrections. CONCLUSIONS: The effectiveness of our proposed LRA correction using the image-stitching technique was demonstrated to significantly improve the accuracy of patient-specific QA for VMAT treatment plans involving large irradiation fields.


Assuntos
Algoritmos , Artefatos , Dosimetria Fotográfica , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos
10.
Gels ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786207

RESUMO

Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy-1 for AgPVAGlyTBO and 0.4 Gy-1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed.

11.
Photochem Photobiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702942

RESUMO

Far-UVC radiation between 200 and 230 nm is a promising technology for reducing airborne disease transmission. Previous work with far-UVC lamps has demonstrated the efficacy of far-UVC radiation to inactivate bacteria and viruses while presenting minimal human health hazards. While far-UVC intentionally exposes the occupied space, effectively disinfecting air between occupants, installations must still ensure that occupant eye and skin exposure is within the recommended daily limits. This study examines far-UVC-sensitive films for measuring the dose received by occupants within two real-world far-UVC installations. The film is characterized for accuracy, angular response, wavelength response, and sources of uncertainty in film response, and used to obtain individual exposure doses that account for both the non-uniform irradiance and the unique motion of individuals within the space. Dosimetry results using the films, which account for the time-weighted average exposure of an occupant, ranged from 10% to 49% of the maximum calculated stationary dose based on peak irradiance measurements. Results from this study spotlight the need to incorporate time-weighted average considerations into the design and safety assessment of far-UVC installations to ultimately operate far-UVC technology with its full potential to prevent the spread of potentially fatal infectious diseases.

12.
Med Phys ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767310

RESUMO

BACKGROUND: In radiotherapy, it is essential to deliver prescribed doses to tumors while minimizing damage to surrounding healthy tissue. Accurate measurements of absorbed dose are required for this purpose. Gafchromic® external beam therapy (EBT) radiochromic films have been widely used in radiotherapy. While the dosimetric characteristics of the EBT3 model film have been extensively studied for photon and charged particle beams (protons, electrons, and carbon ions), little research has been done on α $\alpha$ -particle dosimetry. α $\alpha$ -emitting radionuclides have gained popularity in cancer treatment due to their high linear energy transfer, short range in tissue, and ability to spare surrounding organs at risk, thereby delivering a more localized dose distribution to the tumor. Therefore, a dose-calibration film protocol for α $\alpha$ -particles is required. PURPOSE: This study aimed to develop a dose-calibration protocol for the α $\alpha$ -particle emitting radionuclide 241Am, using Monte Carlo (MC) simulations and measurements with unlaminated EBT3 films. METHODS: In this study, a MC-based user code was developed using the Geant4 simulation toolkit to model and simulate an 241Am source and an unlaminated EBT3 film. Two simulations were performed: one with voxelized geometries of the EBT3 active volume composition and the other using water. The dose rate was calculated within a region of interest in the voxelized geometries. Unlaminated EBT3 film pieces were irradiated with the 241Am source at various exposure times inside a black box. Film irradiations were compared to a 6-MV photon beam from a Varian TrueBeam machine. The simulated dose rate was used to convert the exposure times into absorbed doses to water, describing a radiochromic-film-based reference dosimetry protocol for α $\alpha$ -particles. The irradiated films were scanned and through an in-house Python script, the normalized pixel values from the green-color channel of scanned film images were analyzed. RESULTS: The 241Am energy spectra obtained from the simulations were in good agreement with IAEA and NIST databases, having differences < $<$ 0.516% for the emitted γ $\gamma$ -rays and produced characteristic x-rays and < $<$ 0.006% for the α $\alpha$ -particles. Due to the short range of α $\alpha$ -particles, there was no energy deposition in the voxels outside the active 241Am source region projected onto the film surface. Thus, the total dose rate within the voxels covering the source was 0.847 ± $\pm$ 0.003 Gy/min within the sensitive layer of the film (LiPCDA) and 0.847 ± $\pm$ 0.004 Gy/min in water, indicating that the active volume can be considered water equivalent for the 241Am beam quality. A novel approach was employed in α $\alpha$ -film dosimetry using an exponential fit for the green channel, which showed promising results by reducing the uncertainty in dose estimation within 5%. Although the statistical analysis did not reveal significant differences between the 6-MV photon beam and the α $\alpha$ calibration curves, the dose-response curves exhibited the expected behavior. CONCLUSIONS: The developed MC user code simulated the experimental setup for α $\alpha$ -dosimetry using radiochromic film with acceptable uncertainty. Unlaminated EBT3 film is suitable for the dosimetry of α $\alpha$ -radiation at low doses and can be used in conjunction with other unlaminated GafChromic® films for quality assurance and research purposes.

13.
Phys Imaging Radiat Oncol ; 29: 100544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327761

RESUMO

Background and purpose: A dosimetry audit program based on alanine electron paramagnetic resonance (EPR) and radiochromic film dosimetry, may be a valuable tool for monitoring and improving the quality of lung stereotactic body radiotherapy (SBRT). The aim of this study was to report the initial, independent assessment of the dosimetric accuracy for lung SBRT practice using these dosimeters in combination with a novel phantom design. Materials and Methods: The audit service was a remote audit program performed on a commercial lung phantom preloaded with film and alanine detectors. An alanine pellet was placed in the centre of the target simulated using silicone in a 3D-printed mould. Large film detectors were placed coronally through the target and the lung/tissue interface and analysed using gamma analysis. The beam output was always checked on the same day with alanine dosimetry in water. We audited 29 plans from 14 centres up to now. Results: For the alanine results 28/29 plans were within 5 % with 19/29 plans being within 3 %. The passing rates were > 95 % for the film through the target for 27/29 plans and 17/29 plans for the film at the lung/tissue interface. For three plans the passing rate was < 90 % for the film on top of the lungs. Conclusions: The preliminary results were very satisfactory for both detectors. The high passing rates for the film in the interface region indicate good performance of the treatment planning systems. The phantom design was robust and performed well on several treatment systems.

14.
Br J Radiol ; 97(1155): 646-651, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38273671

RESUMO

OBJECTIVES: To establish the variation in film dosimetry usage in radiotherapy centres across the United Kingdom. To identify consensus and highlight areas of potential improvement to enhance radiotherapy dosimetry verification with film. METHODS: A survey questionnaire was designed by members of the Institute of Physics and Engineering in Medicine Interdepartmental Dosimetry Audit Group via Microsoft Forms and distributed to all Heads of Radiotherapy Physics in the United Kingdom. The survey was open from June 19, 2023, to July 31, 2023. RESULTS: Forty responses were received from the 62 radiotherapy centres in the United Kingdom, of which 58% were currently using film dosimetry and a further 7 were keen to commence use. Many reported film use had decreased in recent years but was still valuable particularly for commissioning and implementing new techniques. The variation and consensus of methods for film dosimetry calibration, measurement, and application was established. A review of barriers to implementation and methods to reduce uncertainty were included in the assessment. CONCLUSIONS: A comprehensive assessment of film dosimetry usage in radiotherapy in the United Kingdom has been collated, which demonstrates a wide variation in methods, across typical clinical users, but maintains film as a valuable dosimetry option. ADVANCES IN KNOWLEDGE: This research provides a snapshot of current film dosimetry use across the United Kingdom. It examines the variation and consensus of practice to which individual users can compare their systems, and identifies opportunities to improvement in the accuracy of film dosimetry.


Assuntos
Dosimetria Fotográfica , Radioterapia (Especialidade) , Humanos , Dosagem Radioterapêutica , Dosimetria Fotográfica/métodos , Radiometria , Reino Unido , Calibragem
15.
Med Phys ; 51(5): 3687-3697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38277471

RESUMO

BACKGROUND: Radiation exposure from interventional radiology (IR) could lead to potential risk of skin injury in patients. Several dose monitoring software like radiation dose monitor (RDM) were developed to estimate the patient skin dose (PSD) distribution in IR. PURPOSE: This study benchmarked the accuracy of RDM software in estimating PSD as compared to GafChromic film baseline in-vivo measurements on patients during cardiac, abdominal, and neurology IR procedures. METHODS: The prospective study conducted in four IR departments included 81 IR procedures (25 cardiac, 31 abdominal, and 25 neurology procedures) on three angiographic systems. PSD and field geometry were measured by placing GafChromic film under the patient's back. Statistical analyses were performed to compare the software estimation and film measurement results in terms of PSD and geometric accuracy. RESULTS: Median values of measured/calculated PSD were 1140/1005, 591/655.9, and 538/409.7 mGy for neurology, cardiac, and abdominal procedures, respectively. For all angiographic systems, the median (InterQuartile Range, IQR) difference between calculated and measured PSD was -10.2% (-21.8%-5.7%) for neurology, -4.5% (-19.5%-15.5%) for cardiac, and -21.9% (-38.7%--3.6%) for abdominal IR procedures. These differences were not significant for all procedures (p > 0.05). Discrepancies increased up to -82% in lower dose regions where the measurement uncertainties are higher. Regarding the geometric accuracy, RDM correctly reproduced the skin dose map and estimated PSD area dimensions closely matched those registered on films with a median (IQR) difference of 0 cm (-1-0.8 cm). CONCLUSIONS: RDM is proved to be a useful solution for the estimation of PSD and skin dose distribution during abdominal, cardiac and neurology IR procedures despite a geometry phantom which is not specific to the latter type of IR procedures.


Assuntos
Benchmarking , Doses de Radiação , Pele , Software , Humanos , Pele/efeitos da radiação , Pele/diagnóstico por imagem , Abdome/diagnóstico por imagem , Neurologia , Estudos Prospectivos , Coração/efeitos da radiação , Coração/diagnóstico por imagem
16.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295408

RESUMO

Objective.Spatially-fractionated radiotherapy (SFRT) delivered with a very-high-energy electron (VHEE) beam and a mini-GRID collimator was investigated to achieve synergistic normal tissue-sparing through spatial fractionation and the FLASH effect.Approach.A tungsten mini-GRID collimator for delivering VHEE SFRT was optimized using Monte Carlo (MC) simulations. Peak-to-valley dose ratios (PVDRs), depths of convergence (DoCs, PVDR ≤ 1.1), and peak and valley doses in a water phantom from a simulated 150 MeV VHEE source were evaluated. Collimator thickness, hole width, and septal width were varied to determine an optimal value for each parameter that maximized PVDR and DoC. The optimized collimator (20 mm thick rectangular prism with a 15 mm × 15 mm face with a 7 × 7 array of 0.5 mm holes separated by 1.1 mm septa) was 3D-printed and used for VHEE irradiations with the CERN linear electron accelerator for research beam. Open beam and mini-GRID irradiations were performed at 140, 175, and 200 MeV and dose was recorded with radiochromic films in a water tank. PVDR, central-axis (CAX) and valley dose rates and DoCs were evaluated.Main results.Films demonstrated peak and valley dose rates on the order of 100 s of MGy/s, which could promote FLASH-sparing effects. Across the three energies, PVDRs of 2-4 at 13 mm depth and DoCs between 39 and 47 mm were achieved. Open beam and mini-GRID MC simulations were run to replicate the film results at 200 MeV. For the mini-GRID irradiations, the film CAX dose was on average 15% higher, the film valley dose was 28% higher, and the film PVDR was 15% lower than calculated by MC.Significance.Ultimately, the PVDRs and DoCs were determined to be too low for a significant potential for SFRT tissue-sparing effects to be present, particularly at depth. Further beam delivery optimization and investigations of new means of spatial fractionation are warranted.


Assuntos
Elétrons , Dosimetria Fotográfica , Método de Monte Carlo , Dosimetria Fotográfica/métodos , Síncrotrons , Carmustina , Água , Dosagem Radioterapêutica , Radiometria
17.
J Appl Clin Med Phys ; 25(1): e14229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032123

RESUMO

BACKGROUND: Pulsed reduced dose rate (PRDR) is an emerging radiotherapy technique for recurrent diseases. It is pertinent that the linac beam characteristics are evaluated for PRDR dose rates and a suitable dosimeter is employed for IMRT QA. PURPOSE: This study sought to investigate the pulse characteristics of a 6 MV photon beam during PRDR irradiations on a commercial linac. The feasibility of using EBT3 radiochromic film for use in IMRT QA was also investigated by comparing its response to a commercial diode array phantom. METHODS: A plastic scintillator detector was employed to measure the photon pulse characteristics across nominal repetition rates (NRRs) in the 5-600 MU/min range. Film was irradiated with dose rates in the 0.033-4 Gy/min range to study the dose rate dependence. Five clinical PRDR treatment plans were selected for IMRT QA with the Delta4 phantom and EBT3 film sheets. The planned and measured dose were compared using gamma analysis with a criterion of 3%/3 mm. EBT3 film QA was performed using a cumulative technique and a weighting factor technique. RESULTS: Negligible differences were observed in the pulse width and height data between the investigated NRRs. The pulse width was measured to be 3.15 ± 0.01 µ s $\mu s$ and the PRF was calculated to be 3-357 Hz for the 5-600 MU/min NRRs. The EBT3 film was found to be dose rate independent within 3%. The gamma pass rates (GPRs) were above 99% and 90% for the Delta4 phantom and the EBT3 film using the cumulative QA method, respectively. GPRs as low as 80% were noted for the weighting factor EBT3 QA method. CONCLUSIONS: Altering the NRRs changes the mean dose rate while the instantaneous dose rate remains constant. The EBT3 film was found to be suitable for PRDR dosimetry and IMRT QA with minimal dose rate dependence.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosimetria Fotográfica/métodos , Radiometria , Raios gama , Fótons
18.
Phys Med ; 116: 103168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984129

RESUMO

The dosimetry audit services were established in Poland in 1991, since then new audits have been introduced. The recently developed IAEA audit methodology for IMRT H&N treatments was tested nationally. Anthropomorphic SHANE phantom (CIRS) was used to perform measurements in 8 hospitals which voluntarily participated in the study. Each participant had to complete successfully pre-visit activities to take part in an onsite visit. During the visit, auditors together with the local staff, did a CT scan using local protocol, recalculated the plan and verified all the relevant parameters and performed measurements with an ionization chamber and films in SHANE. The adoption of IAEA methodology to the national circumstances was done with no major issues. Participants plans were verified and the results of ionization chamber were all within the 5 % tolerance limit for PTV (max 4,5%) and 7 % for OAR (max 5,3%). Film global gamma results (3 %, 3 mm, 90 % acceptance limit) were within 91,5-99,7% range. The IAEA established acceptance criteria which were achievable for most tests except for CTtoRED conversion curve. The locally performed study allowed establishing new limits. The audit gave interesting results and showed that the procedure is very thorough and capable to identify issues related with suboptimal treatment preparation and delivery. The new limits for CTtoRED conversion curve were adopted for national study. Such an audit gives an opportunity to verify the quality of locally implemented procedures and should be available for Polish hospitals on a daily basis.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Polônia , Radiometria/métodos , Imagens de Fantasmas , Dosagem Radioterapêutica
19.
J Med Signals Sens ; 13(3): 191-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622042

RESUMO

Background: Virtual wedge (VW) is used in radiotherapy to compensate for missing tissues and create a uniform dose distribution in tissues. According to TECDOC-1583 and technical reports series no. 430, evaluating the dose calculation accuracy is essential for the quality assurance of treatment planning systems (TPSs). In this study, the dose calculation accuracy of the collapsed cone superposition (CCS) algorithm in the postmastectomy radiotherapy of the chest wall for breast cancer was evaluated by comparing the calculated and measured dose in VW fields. Methods: Two tangential fields with the typical VW angles were planned using ISOgray TPS in a thorax phantom. The CCS algorithm was used for dose calculation at 6 and 15 MV photon beams. The obtained dose distributions from EBT3 film spaces and TPS were evaluated using the gamma index. Results: The measured and calculated dose values using VW in a heterogeneous medium with different beam energies were in a good agreement with each other (acceptance rate: 88.0%-93.4%). The calculated and measured data did not differ significantly with an increase/decrease in wedge angle. In addition, the results demonstrated that ISOgray overestimated and underestimated the dose of the soft tissue and lung in the planned volume, respectively. Conclusions: According to the results of gamma index analysis, the calculated dose distribution using VW model with the CCS algorithm in a heterogeneous environment was within acceptable limits.

20.
Acta Oncol ; 62(8): 915-922, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37504890

RESUMO

BACKGROUND: Dose-surface maps (DSMs) are an increasingly popular tool to evaluate spatial dose-outcome relationships for the rectum. Recently, DSM addition has been proposed as an alternative method of dose accumulation from deformable registration-based techniques. In this study, we performed the first experimental investigation of the accuracy at which DSM accumulation can capture the total dose delivered to a rectum's surface in the presence of inter-fraction motion. MATERIAL AND METHODS: A custom PVC rectum phantom capable of representing typical rectum inter-fraction motion and filling variations was constructed for this project. The phantom allowed for the placement of EBT3 film sheets on the representative rectum surface to measure rectum surface dose. A multi-fraction prostate VMAT treatment was designed and delivered to the phantom in a water tank for a variety of inter-fraction motion scenarios. DSMs for each fraction were calculated in two ways using CBCT images acquired during delivery and summed to produce accumulated DSMs. Accumulated DSMs were then compared to film measurements using gamma analysis (3%/2 mm criteria). Similarity of isodose clusters between films and DSMs was also investigated. RESULTS: Baseline agreement between film measurements and accumulated DSMs for a stationary rectum was 95.6%. Agreement between film and accumulated DSMs in the presence of different types of inter.-fraction motion was ≥92%, and isodose cluster mean distance to agreement was within 1.5 mm for most scenarios. Overall, DSM accumulation performed the best when using DSMs that accounted for changes in rectum path orientation. CONCLUSION: Dose accumulation performed with DSMs was found to accurately replicate total delivered dose to a rectum phantom in the presence of inter-fraction motion.


Assuntos
Neoplasias da Próstata , Reto , Masculino , Humanos , Reto/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Pelve , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA