RESUMO
Finger vein (FV) biometrics have garnered considerable attention due to their inherent non-contact nature and high security, exhibiting tremendous potential in identity authentication and beyond. Nevertheless, challenges pertaining to the scarcity of training data and inconsistent image quality continue to impede the effectiveness of finger vein recognition (FVR) systems. To tackle these challenges, we introduce the visual feature-guided diamond convolutional network (dubbed 'VF-DCN'), a uniquely configured multi-scale and multi-orientation convolutional neural network. The VF-DCN showcases three pivotal innovations: Firstly, it meticulously tunes the convolutional kernels through multi-scale Log-Gabor filters. Secondly, it implements a distinctive diamond-shaped convolutional kernel architecture inspired by human visual perception. This design intelligently allocates more orientational filters to medium scales, which inherently carry richer information. In contrast, at extreme scales, the use of orientational filters is minimized to simulate the natural blurring of objects at extreme focal lengths. Thirdly, the network boasts a deliberate three-layer configuration and fully unsupervised training process, prioritizing simplicity and optimal performance. Extensive experiments are conducted on four FV databases, including MMCBNU_6000, FV_USM, HKPU, and ZSC_FV. The experimental results reveal that VF-DCN achieves remarkable improvement with equal error rates (EERs) of 0.17%, 0.19%, 2.11%, and 0.65%, respectively, and Accuracy Rates (ACC) of 100%, 99.97%, 98.92%, and 99.36%, respectively. These results indicate that, compared with some existing FVR approaches, the proposed VF-DCN not only achieves notable recognition accuracy but also shows fewer number of parameters and lower model complexity. Moreover, VF-DCN exhibits superior robustness across diverse FV databases.
Assuntos
Dedos , Redes Neurais de Computação , Humanos , Dedos/fisiologia , Dedos/irrigação sanguínea , Veias/diagnóstico por imagem , Veias/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Bases de Dados Factuais , Identificação Biométrica/métodosRESUMO
Finger vein recognition methods, as emerging biometric technologies, have attracted increasing attention in identity verification due to their high accuracy and live detection capabilities. However, as privacy protection awareness increases, traditional centralized finger vein recognition algorithms face privacy and security issues. Federated learning, a distributed training method that protects data privacy without sharing data across endpoints, is gradually being promoted and applied. Nevertheless, its performance is severely limited by heterogeneity among datasets. To address these issues, this paper proposes a dual-decoupling personalized federated learning framework for finger vein recognition (DDP-FedFV). The DDP-FedFV method combines generalization and personalization. In the first stage, the DDP-FedFV method implements a dual-decoupling mechanism involving model and feature decoupling to optimize feature representations and enhance the generalizability of the global model. In the second stage, the DDP-FedFV method implements a personalized weight aggregation method, federated personalization weight ratio reduction (FedPWRR), to optimize the parameter aggregation process based on data distribution information, thereby enhancing the personalization of the client models. To evaluate the performance of the DDP-FedFV method, theoretical analyses and experiments were conducted based on six public finger vein datasets. The experimental results indicate that the proposed algorithm outperforms centralized training models without increasing communication costs or privacy leakage risks.
Assuntos
Algoritmos , Dedos , Veias , Humanos , Dedos/irrigação sanguínea , Dedos/fisiologia , Veias/fisiologia , Aprendizado de Máquina , Identificação Biométrica/métodosRESUMO
With the development of biometric identification technology, finger vein identification has received more and more widespread attention for its security, efficiency, and stability. However, because of the performance of the current standard finger vein image acquisition device and the complex internal organization of the finger, the acquired images are often heavily degraded and have lost their texture characteristics. This makes the topology of the finger veins inconspicuous or even difficult to distinguish, greatly affecting the identification accuracy. Therefore, this paper proposes a finger vein image recovery and enhancement algorithm using atmospheric scattering theory. Firstly, to normalize the local over-bright and over-dark regions of finger vein images within a certain threshold, the Gamma transform method is improved in this paper to correct and measure the gray value of a given image. Then, we reconstruct the image based on atmospheric scattering theory and design a pixel mutation filter to segment the venous and non-venous contact zones. Finally, the degraded finger vein images are recovered and enhanced by global image gray value normalization. Experiments on SDUMLA-HMT and ZJ-UVM datasets show that our proposed method effectively achieves the recovery and enhancement of degraded finger vein images. The image restoration and enhancement algorithm proposed in this paper performs well in finger vein recognition using traditional methods, machine learning, and deep learning. The recognition accuracy of the processed image is improved by more than 10% compared to the original image.
Assuntos
Algoritmos , Dedos , Processamento de Imagem Assistida por Computador , Veias , Humanos , Dedos/irrigação sanguínea , Dedos/diagnóstico por imagem , Veias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Identificação Biométrica/métodos , AtmosferaRESUMO
Several deep neural networks have been introduced for finger vein recognition over time, and these networks have demonstrated high levels of performance. However, most current state-of-the-art deep learning systems use networks with increasing layers and parameters, resulting in greater computational costs and complexity. This can make them impractical for real-time implementation, particularly on embedded hardware. To address these challenges, this article concentrates on developing a lightweight convolutional neural network (CNN) named FV-EffResNet for finger vein recognition, aiming to find a balance between network size, speed, and accuracy. The key improvement lies in the utilization of the proposed novel convolution block named the Efficient Residual (EffRes) block, crafted to facilitate efficient feature extraction while minimizing the parameter count. The block decomposes the convolution process, employing pointwise and depthwise convolutions with a specific rectangular dimension realized in two layers (n × 1) and (1 × m) for enhanced handling of finger vein data. The approach achieves computational efficiency through a combination of squeeze units, depthwise convolution, and a pooling strategy. The hidden layers of the network use the Swish activation function, which has been shown to enhance performance compared to conventional functions like ReLU or Leaky ReLU. Furthermore, the article adopts cyclical learning rate techniques to expedite the training process of the proposed network. The effectiveness of the proposed pipeline is demonstrated through comprehensive experiments conducted on four benchmark databases, namely FV-USM, SDUMLA, MMCBNU_600, and NUPT-FV. The experimental results reveal that the EffRes block has a remarkable impact on finger vein recognition. The proposed FV-EffResNet achieves state-of-the-art performance in both identification and verification settings, leveraging the benefits of being lightweight and incurring low computational costs.
RESUMO
FV (finger vein) identification is a biometric identification technology that extracts the features of FV images for identity authentication. To address the limitations of CNN-based FV identification, particularly the challenge of small receptive fields and difficulty in capturing long-range dependencies, an FV identification method named Let-Net (large kernel and attention mechanism network) was introduced, which combines local and global information. Firstly, Let-Net employs large kernels to capture a broader spectrum of spatial contextual information, utilizing deep convolution in conjunction with residual connections to curtail the volume of model parameters. Subsequently, an integrated attention mechanism is applied to augment information flow within the channel and spatial dimensions, effectively modeling global information for the extraction of crucial FV features. The experimental results on nine public datasets show that Let-Net has excellent identification performance, and the EER and accuracy rate on the FV_USM dataset can reach 0.04% and 99.77%. The parameter number and FLOPs of Let-Net are only 0.89M and 0.25G, which means that the time cost of training and reasoning of the model is low, and it is easier to deploy and integrate into various applications.
Assuntos
Identificação Biométrica , Extremidades , Resolução de Problemas , Tecnologia , Veias/diagnóstico por imagem , Processamento de Imagem Assistida por ComputadorRESUMO
In addressing challenges related to high parameter counts and limited training samples for finger vein recognition, we present the FV-MViT model. It serves as a lightweight deep learning solution, emphasizing high accuracy, portable design, and low latency. The FV-MViT introduces two key components. The Mul-MV2 Block utilizes a dual-path inverted residual connection structure for multi-scale convolutions, extracting additional local features. Simultaneously, the Enhanced MobileViT Block eliminates the large-scale convolution block at the beginning of the original MobileViT Block. It converts the Transformer's self-attention into separable self-attention with linear complexity, optimizing the back end of the original MobileViT Block with depth-wise separable convolutions. This aims to extract global features and effectively reduce parameter counts and feature extraction times. Additionally, we introduce a soft target center cross-entropy loss function to enhance generalization and increase accuracy. Experimental results indicate that the FV-MViT achieves a recognition accuracy of 99.53% and 100.00% on the Shandong University (SDU) and Universiti Teknologi Malaysia (USM) datasets, with equal error rates of 0.47% and 0.02%, respectively. The model has a parameter count of 5.26 million and exhibits a latency of 10.00 milliseconds from the sample input to the recognition output. Comparison with state-of-the-art (SOTA) methods reveals competitive performance for FV-MViT.
Assuntos
Fontes de Energia Elétrica , Extremidades , Humanos , Entropia , Reconhecimento Psicológico , VeiasRESUMO
Prosthetic attack is a problem that must be prevented in current finger vein recognition applications. To solve this problem, a finger vein liveness detection system was established in this study. The system begins by capturing short-term static finger vein videos using uniform near-infrared lighting. Subsequently, it employs Gabor filters without a direct-current (DC) component for vein area segmentation. The vein area is then divided into blocks to compute a multi-scale spatial-temporal map (MSTmap), which facilitates the extraction of coarse liveness features. Finally, these features are trained for refinement and used to predict liveness detection results with the proposed Light Vision Transformer (Light-ViT) model, which is equipped with an enhanced Light-ViT backbone, meticulously designed by interleaving multiple MN blocks and Light-ViT blocks, ensuring improved performance in the task. This architecture effectively balances the learning of local image features, controls network parameter complexity, and substantially improves the accuracy of liveness detection. The accuracy of the Light-ViT model was verified to be 99.63% on a self-made living/prosthetic finger vein video dataset. This proposed system can also be directly applied to the finger vein recognition terminal after the model is made lightweight.
Assuntos
Dedos , Veias , Dedos/irrigação sanguínea , Veias/diagnóstico por imagemRESUMO
This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.
Assuntos
Identificação Biométrica , Dedos , Humanos , Dedos/diagnóstico por imagem , Dedos/irrigação sanguínea , Identificação Biométrica/métodos , Biometria/métodos , Mãos/diagnóstico por imagem , Redes Neurais de ComputaçãoRESUMO
Computer vision (CV) technology and convolutional neural networks (CNNs) demonstrate superior feature extraction capabilities in the field of bioengineering. However, during the capturing process of finger-vein images, translation can cause a decline in the accuracy rate of the model, making it challenging to apply CNNs to real-time and highly accurate finger-vein recognition in various real-world environments. Moreover, despite CNNs' high accuracy, CNNs require many parameters, and existing research has confirmed their lack of shift-invariant features. Based on these considerations, this study introduces an improved lightweight convolutional neural network (ILCNN) for finger vein recognition. The proposed model incorporates a diverse branch block (DBB), adaptive polyphase sampling (APS), and coordinate attention mechanism (CoAM) with the aim of improving the model's performance in accurately identifying finger vein features. To evaluate the effectiveness of the model in finger vein recognition, we employed the finger-vein by university sains malaysia (FV-USM) and PLUSVein dorsal-palmar finger-vein (PLUSVein-FV3) public database for analysis and comparative evaluation with recent research methodologies. The experimental results indicate that the finger vein recognition model proposed in this study achieves an impressive recognition accuracy rate of 99.82% and 95.90% on the FV-USM and PLUSVein-FV3 public databases, respectively, while utilizing just 1.23 million parameters. Moreover, compared to the finger vein recognition approaches proposed in previous studies, the ILCNN introduced in this work demonstrated superior performance.
RESUMO
Deep learning is an important technology in the field of image recognition. Finger vein recognition based on deep learning is one of the research hotspots in the field of image recognition and has attracted a lot of attention. Among them, CNN is the most core part, which can be trained to get a model that can extract finger vein image features. In the existing research, some studies have used methods such as combination of multiple CNN models and joint loss function to improve the accuracy and robustness of finger vein recognition. However, in practical applications, finger vein recognition still faces some challenges, such as how to solve the interference and noise in finger vein images, how to improve the robustness of the model, and how to solve the cross-domain problem. In this paper, we propose a finger vein recognition method based on ant colony optimization and improved EfficientNetV2, using ACO to participate in ROI extraction, fusing dual attention fusion network (DANet) with EfficientNetV2, and conducting experiments on two publicly available databases, and the results show that the recognition rate using the proposed method on the FV-USM dataset reaches The results show that the proposed method achieves a recognition rate of 98.96% on the FV-USM dataset, which is better than other algorithmic models, proving that the method has good recognition rate and application prospects for finger vein recognition.
Assuntos
Algoritmos , Dedos , Dedos/irrigação sanguínea , Veias/diagnóstico por imagem , Bases de Dados FactuaisRESUMO
In the biometric field, vein identification is a vital process that is constrained by the invisibility of veins as well as other unique features. Moreover, users generally do not wish to have their personal information uploaded to the cloud, so edge computing has become popular for the sake of protecting user privacy. In this paper, we propose a low-complexity and lightweight convolutional neural network (CNN) and we design intellectual property (IP) for shortening the inference time in finger vein recognition. This neural network system can operate independently in client mode. After fetching the user's finger vein image via a near-infrared (NIR) camera mounted on an embedded system, vein features can be efficiently extracted by vein curving algorithms and user identification can be completed quickly. Better image quality and higher recognition accuracy can be obtained by combining several preprocessing techniques and the modified CNN. Experimental data were collected by the finger vein image capture equipment developed in our laboratory based on the specifications of similar products currently on the market. Extensive experiments demonstrated the practicality and robustness of the proposed finger vein identification system.
Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Biometria , Extremidades , LaboratóriosRESUMO
Metaverse, which is anticipated to be the future of the internet, is a 3D virtual world in which users interact via highly customizable computer avatars. It is considerably promising for several industries, including gaming, education, and business. However, it still has drawbacks, particularly in the privacy and identity threads. When a person joins the metaverse via a virtual reality (VR) human-robot equipment, their avatar, digital assets, and private information may be compromised by cybercriminals. This paper introduces a specific Finger Vein Recognition approach for the virtual reality (VR) human-robot equipment of the metaverse of the Metaverse to prevent others from misappropriating it. Finger vein is a is a biometric feature hidden beneath our skin. It is considerably more secure in person verification than other hand-based biometric characteristics such as finger print and palm print since it is difficult to imitate. Most conventional finger vein recognition systems that use hand-crafted features are ineffective, especially for images with low quality, low contrast, scale variation, translation, and rotation. Deep learning methods have been demonstrated to be more successful than traditional methods in computer vision. This paper develops a finger vein recognition system based on a convolution neural network and anti-aliasing technique. We employ/ utilize a contrast image enhancement algorithm in the preprocessing step to improve performance of the system. The proposed approach is evaluated on three publicly available finger vein datasets. Experimental results show that our proposed method outperforms the current state-of-the-art methods, improvement of 97.66% accuracy on FVUSM dataset, 99.94% accuracy on SDUMLA dataset, and 88.19% accuracy on THUFV2 dataset.
RESUMO
In today's information age, how to accurately identify a person's identity and protect information security has become a hot topic of people from all walks of life. At present, a more convenient and secure solution to identity identification is undoubtedly biometric identification, but a single biometric identification cannot support increasingly complex and diversified authentication scenarios. Using multimodal biometric technology can improve the accuracy and safety of identification. This paper proposes a biometric method based on finger vein and face bimodal feature layer fusion, which uses a convolutional neural network (CNN), and the fusion occurs in the feature layer. The self-attention mechanism is used to obtain the weights of the two biometrics, and combined with the RESNET residual structure, the self-attention weight feature is cascaded with the bimodal fusion feature channel Concat. To prove the high efficiency of bimodal feature layer fusion, AlexNet and VGG-19 network models were selected in the experimental part for extracting finger vein and face image features as inputs to the feature fusion module. The extensive experiments show that the recognition accuracy of both models exceeds 98.4%, demonstrating the high efficiency of the bimodal feature fusion.
Assuntos
Identificação Biométrica , Algoritmos , Identificação Biométrica/métodos , Biometria , Humanos , Redes Neurais de Computação , VeiasRESUMO
Finger vein recognition has evolved into a major biometric trait in recent years. Despite various improvements in recognition accuracy and usability, finger vein recognition is still far from being perfect as it suffers from low-contrast images and other imaging artefacts. Three-dimensional or multi-perspective finger vein recognition technology provides a way to tackle some of the current problems, especially finger misplacement and rotations. In this work we present a novel multi-perspective finger vein capturing device that is based on mirrors, in contrast to most of the existing devices, which are usually based on multiple cameras. This new device only uses a single camera, a single illumination module and several mirrors to capture the finger at different rotational angles. To derive the need for this new device, we at first summarise the state of the art in multi-perspective finger vein recognition and identify the potential problems and shortcomings of the current devices.
RESUMO
In the field of biometric recognition, finger vein recognition has received widespread attention by virtue of its advantages, such as biopsy, which is not easy to be stolen. However, due to the limitation of acquisition conditions such as noise and illumination, as well as the limitation of computational resources, the discriminative features are not comprehensive enough when performing finger vein image feature extraction. It will lead to such a result that the accuracy of image recognition cannot meet the needs of large numbers of users and high security. Therefore, this paper proposes a novel feature extraction method called principal component local preservation projections (PCLPP). It organically combines principal component analysis (PCA) and locality preserving projections (LPP) and constructs a projection matrix that preserves both the global and local features of the image, which will meet the urgent needs of large numbers of users and high security. In this paper, we apply the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger vein database to evaluate PCLPP and add "Salt and pepper" noise to the dataset to verify the robustness of PCLPP. The experimental results show that the image recognition rate after applying PCLPP is much better than the other two methods, PCA and LPP, for feature extraction.
Assuntos
Algoritmos , Veias , Biometria/métodos , Dedos/irrigação sanguínea , Humanos , Análise de Componente PrincipalRESUMO
Finger vein recognition has drawn increasing attention as one of the most popular and promising biometrics due to its high distinguishing ability, security, and non-invasive procedure. The main idea of traditional schemes is to directly extract features from finger vein images and then compare features to find the best match. However, the features extracted from images contain much redundant data, while the features extracted from patterns are greatly influenced by image segmentation methods. To tackle these problems, this paper proposes a new finger vein recognition algorithm by generating code. The proposed method does not require an image segmentation algorithm, is simple to calculate, and has a small amount of data. Firstly, the finger vein images were divided into blocks to calculate the mean value. Then, the centrosymmetric coding was performed using the matrix generated by blocking and averaging. The obtained codewords were concatenated as the feature codewords of the image. The similarity between vein codes is measured by the ratio of minimum Hamming distance to codeword length. Extensive experiments on two public finger vein databases verify the effectiveness of the proposed method. The results indicate that our method outperforms the state-of-the-art methods and has competitive potential in performing the matching task.
Assuntos
Algoritmos , Dedos , Biometria/métodos , Bases de Dados Factuais , Dedos/irrigação sanguínea , Veias/diagnóstico por imagemRESUMO
Finger-vein biometrics has been extensively investigated for personal verification. Single sample per person (SSPP) finger-vein recognition is one of the open issues in finger-vein recognition. Despite recent advances in deep neural networks for finger-vein recognition, current approaches depend on a large number of training data. However, they lack the robustness of extracting robust and discriminative finger-vein features from a single training image sample. A deep ensemble learning method is proposed to solve the SSPP finger-vein recognition in this article. In the proposed method, multiple feature maps were generated from an input finger-vein image, based on various independent deep learning-based classifiers. A shared learning scheme is investigated among classifiers to improve their feature representation captivity. The learning speed of weak classifiers is also adjusted to achieve the simultaneously best performance. A deep learning model is proposed by an ensemble of all these adjusted classifiers. The proposed method is tested with two public finger vein databases. The result shows that the proposed approach has a distinct advantage over all the other tested popular solutions for the SSPP problem.
RESUMO
This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human's identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.
RESUMO
As the second generation of biometric technology, finger vein recognition has become a research hotspot due to its advantages such as high security, and living body recognition. In recent years, the global pandemic has promoted the development of contactless identification. However, the unconstrained finger vein acquisition process will introduce more uneven illumination, finger image deformation, and some other factors that may affect the recognition, so it puts forward higher requirements for the acquisition speed, accuracy and other performance. Considering the universal, obvious, and stable characteristics of the original finger vein imaging, we proposed a new Region Of Interest (ROI) extraction method based on the characteristics of finger vein image, which contains three innovative elements: a horizontal Sobel operator with additional weights; an edge detection method based on finger contour imaging characteristics; a gradient detection operator based on large receptive field. The proposed methods were evaluated and compared with some representative methods by using four different public datasets of finger veins. The experimental results show that, compared with the existing representative methods, our proposed ROI extraction method is 1/10th of the processing time of the threshold-based methods, and it is similar to the time spent for coarse extraction in the mask-based methods. The ROI extraction results show that the proposed method has better robustness for different quality images. Moreover, the results of recognition matching experiments on different datasets indicate that our method achieves the best Equal Error Rate (EER) of 0.67% without the refinement of feature extraction parameters, and all the EERs are significantly lower than those of the representative methods.
Assuntos
Dedos , Veias , Algoritmos , Biometria , Processamento de Imagem Assistida por Computador , IluminaçãoRESUMO
Among many available biometrics identification methods, finger-vein recognition has an advantage that is difficult to counterfeit, as finger veins are located under the skin, and high user convenience as a non-invasive image capturing device is used for recognition. However, blurring can occur when acquiring finger-vein images, and such blur can be mainly categorized into three types. First, skin scattering blur due to light scattering in the skin layer; second, optical blur occurs due to lens focus mismatching; and third, motion blur exists due to finger movements. Blurred images generated in these kinds of blur can significantly reduce finger-vein recognition performance. Therefore, restoration of blurred finger-vein images is necessary. Most of the previous studies have addressed the restoration method of skin scattering blurred images and some of the studies have addressed the restoration method of optically blurred images. However, there has been no research on restoration methods of motion blurred finger-vein images that can occur in actual environments. To address this problem, this study proposes a new method for improving the finger-vein recognition performance by restoring motion blurred finger-vein images using a modified deblur generative adversarial network (modified DeblurGAN). Based on an experiment conducted using two open databases, the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein database and Hong Kong Polytechnic University finger-image database version 1, the proposed method demonstrates outstanding performance that is better than those obtained using state-of-the-art methods.