Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Small ; : e2404470, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934337

RESUMO

The uncontrollable growth of lithium dendrites and the flammability of electrolytes are the direct impediments to the commercial application of high-energy-density lithium metal batteries (LMBs). Herein, this study presents a novel approach that combines microencapsulation and electrospinning technologies to develop a multifunctional composite separator (P@AS) for improving the electrochemical performance and safety performance of LMBs. The P@AS separator forms a dense charcoal layer through the condensed-phase flame retardant mechanism causing the internal separator to suffocate from lack of oxygen. Furthermore, it incorporates a triple strategy promoting the uniform flow of lithium ions, facilitating the formation of a highly ion-conducting solid electrolyte interface (SEI), and encouraging flattened lithium deposition with active SiO2 seed points, considerably suppressing lithium dendrites growth. The high Coulombic efficiency of 95.27% is achieved in Li-Cu cells with additive-free carbonate electrolyte. Additionally, stable cycling performance is also maintained with a capacity retention rate of 93.56% after 300 cycles in LFP//Li cells. Importantly, utilizing P@AS separator delays the ignition of pouch batteries under continuous external heating by 138 s, causing a remarkable reduction in peak heat release rate and total heat release by 23.85% and 27.61%, respectively, substantially improving the fire safety of LMBs.

2.
Heliyon ; 10(9): e29397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694025

RESUMO

Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF6- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF6 electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (ΔH = 5.26 kJ) (LiPF6) to 285 °C (ΔH = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF6 and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

3.
Small ; : e2312083, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644686

RESUMO

Due to the ubiquitous and inexhaustible solar source, photothermal materials have gained considerable attention for their potential in heating and de-icing. Nevertheless, traditional photothermal materials, exemplified by graphene, frequently encounter challenges emanating from their elevated reflectance. Inspired by ocular structures, this study uses the Fresnel equation to enhance the photo-thermal conversion efficiency of graphene by introducing a polydimethylsiloxane (PDMS)/silicon dioxide (SiO2) coating, which reduces the light reflectance (≈20%) through destructive interference. The designed coating achieves an equilibrium temperature of ≈77 °C at one sun and a quick de-icing in ≈65 s, all with a thickness of 5 µm. Simulations demonstrate that applying this coating to high-rise buildings results in energy savings of ≈31% in winter heating. Furthermore, the combination of PDMS/SiO2 and graphene confers a notable enhancement in thermal stability through a synergistic flame-retardant mechanism, effectively safeguarding polyurethane against high temperatures and conflagrations, leading to marked reduction of 58% and 28% in heat release rate and total heat release. This innovative design enhances the photo-thermal conversion, de-icing function, and flame retardancy of graphene, thereby advancing its applications in outdoor equipment, high-rise buildings, and aerospace vessels.

4.
AORN J ; 119(5): 340-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661433

RESUMO

Creating a safe environment for performing surgical procedures is essential to achieve successful patient outcomes and protect the perioperative personnel who are providing care. Numerous factors challenge the provision of a safe environment of care and create a complex setting for perioperative nurses to manage. The updated AORN "Guideline for a safe environment of care" provides perioperative nurses with recommendations for establishing a safe environment for both patients and personnel. This article provides an overview of the guideline and discusses recommendations for implementing fire safety protocols, using warming cabinets, and creating a latex-safe environment. It also includes a scenario describing the care of a patient with an unidentified latex allergy who is undergoing a laparoscopic sleeve gastrectomy and hiatal hernia repair. Perioperative nurses should review the guideline in its entirety and implement recommendations as applicable in operative and other procedural settings.


Assuntos
Enfermagem Perioperatória , Humanos , Enfermagem Perioperatória/normas , Enfermagem Perioperatória/métodos , Guias de Prática Clínica como Assunto , Segurança do Paciente/normas , Gestão da Segurança/normas , Gestão da Segurança/métodos , Guias como Assunto
5.
Waste Manag ; 182: 215-224, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670005

RESUMO

Incidents of waste and biofuel fires are common at all stages of the waste recycling chain and have grave implications for business, employees, firefighters, society, and environment. An early detection of waste and biofuel fires in the smouldering stage could save precious lives, resources, and our environment. Existing fire detection methodologies e.g. handheld temperature sensors, IR cameras, gas sensors, and video and satellite-based monitoring techniques have inherent limitations to efficiently detect smouldering fires. An attempt was made to explore the potential of electrical resistivity tomography (ERT) as an alternate tool to address the problem. In the experiments an externally powered resistive wire was employed to initiate the smouldering fire inside the test material (wood pellets, wood shavings, wood fines). Time series of ERT that followed the initiation and development of smouldering were recorded using an automated monitoring instrument setup. The actual geometry of the experimental sample container and electrode setup was integrated in the 3D finite element method (FEM) model grid to perform inverse numerical modelling (inversion) and to develop resistivity tomographic images. The study shows a sharp increase in ratio of resistivity (R/Ro ≥ 50 %) in the test material in the region of smouldering hotspot and demonstrates the potential use of ERT technique for the detection of smouldering hotspots in silos and pile storage of organic material such as wood-based fuels, wood waste, coal, municipal solid waste (MSW), recyclables etc. More research is however required for enabling the use of this technique at the practical scale for different storage conditions.


Assuntos
Madeira , Incêndios , Reciclagem/métodos , Tomografia/métodos , Eliminação de Resíduos/métodos , Biocombustíveis/análise
6.
ACS Appl Mater Interfaces ; 16(12): 15227-15241, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498312

RESUMO

Biobased-functionalized metal-organic frameworks (Bio-FUN-MOFs) stand out from the crowd of candidates in the flame-retardant field due to their multipathway flame-retardant mechanisms and green synthesis processes. However, exploring and designing Bio-FUN-MOFs tend to counteract the problem of compromising the flame-retardant advantages of MOFs themselves, which inevitably results in a waste of resources. Herein, a strategy in which MOFs are ecologically regulated through acid-base balance is presented for controllable preparation of Bio-FUN-MOFs by two birds with one stone, i.e., higher flame-retardant element loading and retention of more MOF structures. Specifically, the buffer layer is created on the periphery of ZIF-67 by weak etching of biobased alkali arginine to resist the excessive etching of ZIF-67 by phytic acid when loading phosphorus source and to preserve the integrity of internal crystals as much as possible. As a proof of concept, ZIF-67 was almost completely etched out by phytic acid in the absence of arginine. The arginine and phytic acid-functionalized ZIF-67 with yolk@shell structure (ZIF@Arg-Co-PA) obtained by this strategy, as a biobased flame retardant, reduces fire hazards for polyurea composites. At only 5 wt % loading, ZIF@Arg-Co-PA imparted polyurea composites with a limiting oxygen index of 23.2%, and the peaks of heat release rate, total heat release, and total smoke production were reduced by 43.8, 32.3, and 34.3%, respectively, compared to neat polyurea. Additionally, the prepared polyurea composites have acceptable mechanical properties. This work will shed light on the advanced structural design of polymer composites with excellent fire safety, especially environmentally friendly and efficient biobased MOF flame retardants.

7.
Heliyon ; 10(5): e27454, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463842

RESUMO

Most early-stage fires originating in small confined spaces may not be effectively mitigated by automatic fire-extinguishing systems. Leveraging the unique controlled release capability and barrier properties of microcapsules presents a promising avenue for developing multifunctional and intelligent fire-extinguishing agents tailored for early-stage fire suppression. This paper introduces two types of microcapsules that integrate automatic detection and fire extinguishing functions, utilizing fluorinated liquids specifically perfluoro(2-methyl-3-pentanone) and 1,1,1,2,2,3,4,5,5,5 decafluoro-3-methoxy-4(trifluoromethyl)-pentane as core materials. The preparation process was optimized, and the thermal response of the microcapsules was evaluated by directly incorporating them into combustible materials. The results indicated a correlation between the preparation method, coating efficiency, and thermal stability of microcapsules with the core-wall materials. When the fluoride solution in the core material reaches the thermal response threshold temperature, the gas pressure generated during vaporization and phase change can break through the shell, enabling early active fire protection. Beyond a specific threshold of additive microcapsules in the material, the material exhibits self-extinguishing potential during combustion. In cases where the additive amount falls short of achieving self-extinguishing, the fire-resistant performance of materials can be enhanced through various measures. For instance, reducing the amount of fire-extinguishing agents, delaying the ignition time of fuel, and lowering the heat release rate during combustion are effective strategies. Moreover, the degree of improvement is related to the additional amount and the type of core-wall materials. The thermal-response mechanism of microcapsules constitutes a comprehensive mechanism with physical and chemical effects. The finding of this research offer a new technical approach for microencapsulating high-boiling-point gas extinguishing agents, facilitating intelligent and precise prevention of early fires resulting from combustible materials.

8.
MethodsX ; 12: 102632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524304

RESUMO

With temperatures rising above 1000 °C within 5 min, hydrocarbon fire causes rapid strength degradation of structural steel members. It is among the most dangerous hazards, such as boiling liquid expanding vapour explosion (BLEVE) in the oil and gas industry. Intumescent coating as passive protection is widely adopted to prevent the steel structure from material property reduction. However, when optimising fire protection with heat transfer simulation, repetitive modelling work and lacking recalculation principle hinder productivity improvement. This method is developed to generate steel beam models and provides an effective algorithm to optimise coating thickness considering the temperature of a specific region. The main functions of the method include: •Providing section dimensions, initial insulation thickness, target temperature and heating time, temperature allowance and mesh size as variables.•Automatically generating the Abaqus steel beam model under 3-side heating conditions.•Effective iteration algorithm to modify fire protection thickness: test containing 38 Universal beam sections with a 5 °C allowance below target shows that 55.2% were completed within five iterations and 76.3% were completed within eight iterations.

9.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474914

RESUMO

Walking speed is a significant aspect of evacuation efficiency, and this speed varies during fire emergencies due to individual physical abilities. However, in evacuations, it is not always possible to keep an upright posture, hence atypical postures, such as stoop walking or crawling, may be required for survival. In this study, a novel 3D passive vision-aided inertial system (3D PVINS) for indoor positioning was used to track the movement of 20 volunteers during an evacuation in a low visibility environment. Participants' walking speeds using trunk flexion, trunk-knee flexion, and upright postures were measured. The investigations were carried out under emergency and non-emergency scenarios in vertical and horizontal directions, respectively. Results show that different moving directions led to a roughly 43.90% speed reduction, while posture accounted for over 17%. Gender, one of the key categories in evacuation models, accounted for less than 10% of the differences in speed. The speeds of participants under emergency scenarios when compared to non-emergency scenarios was also found to increase by 53.92-60% when moving in the horizontal direction, and by about 48.28-50% when moving in the vertical direction and descending downstairs. Our results also support the social force theory of the warming-up period, as well as the effect of panic on the facilitating occupants' moving speed.


Assuntos
Incêndios , Caminhada , Humanos , Postura , Posição Ortostática , Velocidade de Caminhada
10.
Int J Biol Macromol ; 264(Pt 1): 130157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360232

RESUMO

With the continuous development of the society, there is a growing demand for the durability, versatility and multifunction of cott fabrics. In this work, the cotton fabric is coated with multifunctional coating via dip-coating of transition metal carbide (MXene) and then encapsulation of dimethyloctadecyl [3-trimethoxysilopropyl] ammonium chloride (QAS). In view of MXene with excellent light absorption and photothermal conversion efficiency, the controllable antibacterial performance of the cotton fabric is further improved. Benefiting from the encapsulation of QAS, CF@P@M@QAS fabric shows mechanical stability (24 h washing, 1000 cycles folding test and 100 cyclic abrasion) and hydrophobicity. Meantime, the QAS on the surface of multifunctional cotton fabric significantly increases antibacterial activity, and the antibacterial rate can reach to 100 % against Staphylococcus aureus (S. aureus) and 98 % Escherichia coli (E. coli). Besides, CF@P@M@QAS cotton fabric also integrates functions of fire safety and physical therapy. Thus, this multifunctional cotton fabric based MXene offers a novel solution for extending its application in medical electronics and physical therapy.


Assuntos
Fibra de Algodão , Escherichia coli , Nitritos , Elementos de Transição , Staphylococcus aureus , Antibacterianos/farmacologia , Compostos de Amônio Quaternário
11.
Int J Biol Macromol ; 263(Pt 1): 130317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387629

RESUMO

With the proposal of sustainable development strategy, bio-based energy storage transparent wood (TW) has shown broad application value in green buildings, cold chain transportation, and optoelectronic device fields. However, its application in most fields is limited due to its own flammability. In this study, epoxy resin, triethyl phosphate (TEP) and polyethylene glycol (PEG) were introduced into delignified balsa wood template by vacuum pressure impregnation, and bio-based TW/PEG/TEP integrating flame retardant, high strength and phase-change energy-storage performance was prepared. TW/PEG composites have no leakage during phase change process and their transparency is up to 95 %. Compared with TW/PEG, the shielding effect of char layer and the inhibition effect in condensed and gas phase significantly decrease the total heat release of TW/PEG/TEP. TW/PEG/TEP biocomposites still maintained a high enthalpy of phase change and a low peak melting temperature, which was conducive to its application around the area of low temperature phase change energy storage. In addition, the tensile strength of TW/PEG/TEP was nearly 4 times higher than that of DW, and its toughness was obviously enhanced. TW/PEG/TEP biocomposites conformed to the current concept of energy-saving and green development. It has the potential to replace traditional petrochemical-based materials and shows excellent application prospects in emerging fields.


Assuntos
Retardadores de Chama , Organofosfatos , Fenômenos Físicos , Celulose , Temperatura Baixa , Polietilenoglicóis
12.
Heliyon ; 10(4): e26309, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404805

RESUMO

Insulation products made of expanded polystyrene (EPS) are commonly utilized in buildings. However, Norwegian building regulations restrict the use of such combustible insulation due to an increased risk of fire spread and generation of smoke and toxic gases. Installation of fire protection coverings has been adopted as a mitigation strategy to address these safety risks. Notably, the current regulations lack pre-approved solutions describing what is considered an adequate protection of combustible insulation. The present study investigated the fire protection properties of selected coverings used to protect EPS insulation in inner walls. Eight comparative fire tests were conducted using an indicative fire resistance test furnace. The test specimens consisted of EPS blocks mounted on a wooden frame and covered with one or two layers of selected board coverings. The specimens were positioned vertically within the test furnace, and each fire test lasted for 10 or 15 min. Test results revealed that only two configurations consisting of either two layers of 12.5 mm gypsum boards or a combination of 12 mm oriented strand board (OSB) and 12.5 mm gypsum board showed no evidence of damage to the EPS substrate after a 15-min fire exposure. Consequently, the findings suggest that a total covering thickness of at least 24.5 mm, comprising two layers of boards, is necessary to prevent adverse effects on EPS insulation. Furthermore, fire tests conducted on coverings with introduced damages and defects showed that the affected area around the damages and defects were limited. For the standard EPS substrate, this area extended from 28 mm to 90 mm, while for the fire-retardant EPS substrate from 28 mm to 75 mm after a 10-min fire exposure. These results suggest that minor physical failures in the covering have limited impact on the fire safety of the system.

13.
ACS Appl Mater Interfaces ; 16(6): 7617-7630, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315971

RESUMO

Up to now, metal-organic frameworks (MOFs) with open nanostructures have shown outstanding capabilities in trapping smoke particles compared to the original MOFs. However, only a few MOF-based strategies have been reported to synthesize hierarchical porous cages thus far, which are mainly restricted to environmentally unfriendly wet-chemical liquid methods. Herein, as a proof-of-concept, a gas-steamed metal-organic framework approach was designed to fabricate a series of cheeselike open cages with hierarchical porosity. Briefly, zeolitic imidazolate framework-67 (ZIF-67) and phytic acid were employed as precursor and etchant, respectively. Abandoning the conventional wet-chemical method, the coordination bond of ZIF-67 was cleaved by acidic steam, forming an open framework with a high specific surface area and a hierarchical porous structure. The universality of this method was also confirmed by the selection of different etchants. Impressively, they also show outstanding fume-toxic adsorption capability and labyrinth effects based on abundant and complex porous channels. At only 5 wt % loading, Co3O4@open ZIF-67 cage-2 (Co3O4@OZC-2) imparted polyurea (PUA) composites with a 21.2% limiting oxygen index, and the peak of heat release rate, total heat release, and total smoke production were reduced by around 37.5, 25.5, and 40.4%, respectively, compared to neat PUA. This work will shed light on the advanced structural design of polymer composites with high fire safety, especially smoke suppression performance, so as to obtain more feasible applications.

14.
Int J Biol Macromol ; 258(Pt 1): 128744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123033

RESUMO

The bio-based coatings of cellulose fabrics (cotton) had attracted increasing attention for multifunction and sustainability but suffered from poor durability and low efficiency. Here, the aldehyde-free and durable coatings for cotton fabrics (CPZ@CF) with satisfactory flame retardancy, antibacteria as well as wearing performance were prepared through the interfacial coordination effect where the well-organized zinc phytate complex were in situ grew on the pre-treated surface of cotton fabrics with chitosan (CS) and Zn2+. The CZP@CF exhibited excellent antibacterial activity for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with 99.99 % antibacterial rates benefiting from the synergistic effect between Zn2+ and CS. Meanwhile, even the CPZ coatings loading was only 1.5 wt%, the fire safety of CZP@CF remarkably enhanced owing to the excellent synergistic catalytic charring and free radical capture. More importantly, the antibacterial rates of CZP@CF for S. aureus and E. coli still reached 99.99 % and 91.67 % after 50 washing cycles. Additionally, this treatment method did not deteriorate the fabrics properties, including mechanical and breathability as well as wearing performance, which provided the approach to fabricate the flame retardant and antibacterial textiles with well durability and wearing performance.


Assuntos
Celulose , Quitosana , Fibra de Algodão , Escherichia coli , Staphylococcus aureus , Aldeídos , Antibacterianos
15.
Polymers (Basel) ; 15(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139987

RESUMO

This study focuses on the increased risk of high heat release and asphyxiation (toxic gas poisoning) in the event of a fire involving polyurethane (PU)- and MDF-based building materials, which are commonly used in buildings. Among them, polyurethane (PU) building materials are very commonly used in buildings, except in Europe and some other countries, due to their excellent thermal insulation performance. Still, problems of short-term heat release and the spread of toxic gases in the event of a fire continue to occur. To overcome these problems, researchers are actively working on introducing various flame retardants into building materials. Therefore, in this study, we produced a laboratory-sized (500 mm × 500 mm) plate-like flame-retardant board that can be utilized as a building material with a lower heat release rate and a lower toxicity index. The material was made by mixing expanded graphite and ceramic binder as flame retardants in a material that is formulated based on the cellulose of waste paper, replacing the existing building materials with a hot-press method. According to the ISO-5660-1 test on the heat release rate of the plate-like flame-retardant board, the Total Heat Release (THR) value was 2.9 (MJ/m2) for 10 min, showing an effect of reducing the THR value by 36.3 (MJ/m2) compared to the THR value of 39.2 (MJ/m2) of the specimen made using only paper. In addition, the toxicity index of the flame-retardant board was checked through the NES (Naval Engineering Standards)-713 test. As a result, the test specimen showed a toxicity index of 0.7, which is 2.4 lower than the toxicity index of 3.1 of MDF, which is utilized as a conventional building material. Based on the results of this study, the cellulose fire-retardant board showed the effect of reducing the heat release rate and toxicity index of building materials in a building fire, which reduces the risk of rapid heat spread and smoke toxicity. This has the potential to improve the evacuation time (A-SET) of evacuees in fires. It is also important to show that recycling waste paper and utilizing it as the main material for building materials can be an alternative in terms of sustainable development.

16.
ACS Appl Mater Interfaces ; 15(51): 59838-59853, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38105599

RESUMO

An unconventional P/N/Si-free fire safety of epoxy at an ultralow loading with a significantly improved mechanical robustness and toughness via a mere nanocomposite technique is a great challenge. To achieve the goal, a proof of concept is proposed associated with a hierarchical manipulation of catalysis-tailored FexSy ultrathin nanosheets on organic-layered double hydroxide (LDH-DBS@FexSy) toward the formation of porous piling structure via a self-sacrificing conversion of metal-organic framework. A sufficient characterization certified the targeted architecture and composition. A P/N/Si-free ultralow loading of 2 wt % LDH-DBS@FexSy (i.e., 0.6 wt % FexSy) imparted epoxy with UL-94 V-0 rating, a 36.1% reduction of peak heat release rate, as well as a pronounced fire-protection feature. A systematic contrastive investigation evidenced a time-dependent fire-shielding effect induced by a featured catalysis-tailored ultrafast charring behavior at the interface of epoxy and LDH nanosheets. Intriguingly, the tensile strength, impact strength, and flexural strength were simultaneously enhanced by 62.2, 185.4, and 62.9%, respectively, with a 0.6 wt % incorporation of FexSy hierarchy on the basis of a "root-soil"-inspired interfacial "interlocking" structure. In perspective, an integrated manipulation of an interface catalysis-tailored ultrafast charring and hierarchical "interlocking" construction offer an effective balance of the fire safety, mechanical robustness, and toughness of polymers.

17.
Math Biosci Eng ; 20(9): 17003-17017, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37920044

RESUMO

The fire safety management policy is the premise for city managers to master the urban fire safety situation and solve the urban fire safety problems. An excellent fire safety management policy can obtain the basic data of fire safety, analyze the existing problems and potential safety hazards, and provide targeted measures for urban fire safety management. At present, the traditional fire safety management policy has exposed many shortcomings, such as the lack of technical support for firefighting means, inaccurate fire data analysis, etc., which ultimately led to low fire extinguishing efficiency and wasted some human and material resources. In the context of smart cities, big data (BD) and artificial intelligence (AI) have gradually integrated into various fields of urban development. This paper studied the fire safety management policies of smart cities based on BD analysis method. First, it summarized the relationship among BD, AI and smart cities, then analyzed the limitations of traditional urban fire safety management models, and finally proposed new fire safety management methods based on BD, AI and sustainable development. This article analyzed the urban fire protection situation from January to June 2022 in Nanchang, and verified the effectiveness of the method proposed in this article. Research has shown that the new fire safety management policy has reduced the number of fires, improved fire extinguishing efficiency by 9.07%, reduced property damage and casualties, and has a high recognition of the method. This also provides a reference for the next step of BD's application in smart cities.

18.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005484

RESUMO

The recent large-scale fire incidents on construction sites in South Korea have highlighted the need for computer vision technology to detect fire risks before an actual occurrence of fire. This study developed a proactive fire risk detection system by detecting the coexistence of an ignition source (sparks) and a combustible material (urethane foam or Styrofoam) using object detection on images from a surveillance camera. Statistical analysis was carried out on fire incidences on construction sites in South Korea to provide insight into the cause of the large-scale fire incidents. Labeling approaches were discussed to improve the performance of the object detectors for sparks and urethane foams. Detecting ignition sources and combustible materials at a distance was discussed in order to improve the performance for long-distance objects. Two candidate deep learning models, Yolov5 and EfficientDet, were compared in their performance. It was found that Yolov5 showed slightly higher mAP performances: Yolov5 models showed mAPs from 87% to 90% and EfficientDet models showed mAPs from 82% to 87%, depending on the complexity of the model. However, Yolov5 showed distinctive advantages over EfficientDet in terms of easiness and speed of learning.

19.
Polymers (Basel) ; 15(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37688261

RESUMO

The increased demand for cladding in high-rise buildings has prompted engineers to explore alternative products utilizing recycled materials. However, ensuring fire compliance in these alternative claddings, which are predominantly composed of low-volume polymer-based composites, poses a critical challenge. Traditional experimental methods for fire evaluation are costly, time consuming, and environmentally impactful. Considering this, a numerical approach was proposed for evaluating the fire performance of glass-polymer composite materials, which contain a high proportion of recycled glass and a lower percentage of rigid polyurethane. A cone calorimeter test was simulated using Computational Fluid Dynamics (CFD) software to investigate the flammability of the novel glass-polymer composite material. This validated numerical model was employed to assess the combustibility of the glass-polyurethane composite materials and identify influential parameters using the Design of Experiments (DoE) method. Statistical analysis revealed that three material properties, namely, the heat of combustion, the absorption coefficient, and the heat of reaction, significantly influenced the peak heat release rate (pHRR) of the glass-polyurethane composite materials compared to other properties. Based on these findings, an empirical equation was proposed that demonstrates a reasonable correlation with the pHRR of low-polymer recycled glass composite materials. The outcomes of this study hold considerable importance for understanding and predicting the combustibility behaviour of low-polymer-glass composites. By providing a validated numerical model and identifying critical material properties, this research contributes to the development of sustainable fire safety solutions for buildings, enabling the use of recycled materials and reducing reliance on conventional claddings.

20.
Int J Biol Macromol ; 253(Pt 1): 126570, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37648133

RESUMO

A multifunctional lignin derivative nanoparticle (C-P-Lignin) was synthesized by grafting phenyl dichloro sphosphineoxid and 1, 4-dimethoxyacetylene stepwise on the lignin, then it was applied to prepare the thermoplastic polyurethane (TPU) composite with improved mechanical properties, oxidation resistance, and flame retardancy. The tensile strength, the elongation at break, and the toughness of the TPU/2C-P-Lignin sample reached 28.3 MPa, 941 %, and 139.0 MJ/m2 respectively, which were increased by 39.0 %, 3.4 %, and 33.9 % respectively compared with that of the control TPU sample. The anti-fatigue property was also improved. More importantly, the mechanism of the improved mechanical properties was also calculated and simulated by FTIR and Materials Studio software. The TPU/2C-P-Lignin sample exhibited superior oxidation resistance during the process of photoaging and thermal oxidative aging. Furthermore, the peak heat release rate and the smoke production rate for theTPU/2C-P-Lignin sample was reduced by 50.0 % and 53.8 % compared with that of the control TPU. The reason was that the C-P-Lignin is conducive to the formation of uniformly distributed carbon layers. It is expected that this work can provide a new method for expanding the utilization of waste wood as a multifunctional lignin-based filler to improve fire safety and extend the service life of TPU polymers.


Assuntos
Retardadores de Chama , Nanopartículas , Poliuretanos , Lignina , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA