Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(16): e35855, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220978

RESUMO

This article explores changes in the structural, electronic, elastic, and optical properties of the novel cubic Sr3BCl3 (B = As, Sb) with increasing pressure. This research aims to decrease the electronic band gap of Sr3BCl3 (B = As, Sb) by applying pressure, with the objective of enhancing the optical properties and evaluating the potential of these compounds for use in optoelectronic applications. It has been revealed that both the lattice parameter and cell volume exhibit a declining pattern as pressure increases. At ambient pressure, analysis of the band structure revealed that both Sr3AsCl3 and Sr3SbCl3 are direct band gap semiconductors. With increasing pressure up to 25 GPa the electronic band gap of Sr3AsCl3 (Sr3SbCl3) reduces from 1.70 (1.72) eV to 0.35 (0.10) eV. However, applying hydrostatic pressure enables the attainment of optimal bandgaps for Sr3AsCl3 and Sr3SbCl3, offering theoretical backing for the adjustment of Sr3BCl3 (B = As, Sb) perovskite's bandgaps. The electron and hole effective masses in this perovskite exhibit a gradual decrease as pressure rises from 0 to 25 GPa, promoting the conductivity of both electrons and holes. The elastic properties are calculated using the Thermo-PW tool, revealing that they are anisotropic, ductile, mechanically stable, and resistant to plastic deformation. Importantly, these mechanical properties of both compounds are significantly enhanced under pressure. Optical properties, including the absorption and extinction coefficients, dielectric function, refractive index, reflectivity, and loss function, were calculated within the 0-20 eV range under different pressure conditions. The calculated optical properties highlight the versatility and suitability of Sr3AsCl3 and Sr3SbCl3 perovskites for pressure-tunable optoelectronic devices.

2.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998444

RESUMO

Incorporating metal cations into V2O5 has been proven to be an effective method for solving the poor long-term cycling performance of vanadium-based oxides as electrodes for mono- or multivalent aqueous rechargeable batteries. This is due to the existence of a bilayer structure with a large interlayer space in the V2O5 electrode and to the fact that the intercalated ions act as pillars to support the layered structure and facilitate the diffusion of charged carriers. However, a fundamental understanding of the mechanical stability of multi-ion-co-intercalated bilayered V2O5 is still lacking. In this paper, a variety of pillared vanadium pentoxides with two types of co-intercalated ions were studied. The root-mean-square deviation of the V-O bonds and the elastic constants calculated by density functional theory were used as references to evaluate the stability of the intercalated compounds. The d-band center and electronic band structures are also discussed. Our theoretical results show that the structural characteristics and stability of the system are quite strongly influenced by the intercalating strategy.

3.
J Phys Condens Matter ; 36(33)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729186

RESUMO

Spin reorientation transition is an ubiquitous phenomenon observed in magnetic rare earth orthferrites RFeO3, which has garnered significant attention in recent years due to its potential applications in spintronics or magnetoelectric devices. Although a plenty of experimental works suggest that the magnetic interaction between R3+and Fe3+spins is at the heart of the spin reorientation, but a direct and conclusive theoretical support has been lacking thus far, primarily due to the challenging nature of handling R 4felectrons. In this paper, we explored DyFeO3as an example by means of comprehensive first principles calculations, and compared two different approaches, where the Dy 4felectrons were treated separately as core or valence states, aiming to elucidate the role of Dy 4felectrons, particularly in the context of the spin reorientation transition. The comparison provides a solid piece of evidence for the experimental argument that the Dy3+-Fe3+magnetic interactions play a vital role in triggering spin reorientation of Fe3+moments at low temperatures. The findings revealed here not only extend our understanding on the underlying mechanism for spin reorientation transition in RFeO3, but also highlight the importance of explicit description of R 4felectrons in rationally reproducing their structural, electronic and magnetic properties.

4.
Nanotechnology ; 35(30)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648740

RESUMO

Recently, CrSe2, a new ferromagnetic van der Waals two-dimensional material, was discovered to be highly stable under ambient conditions, making it an attractive candidate for fundamental research and potential device applications. Here, we study the interlayer interactions of bilayer CrSe2using first-principles calculations. We demonstrate that the interlayer interaction depends on the stacking structure. The AA and AB stackings exhibit antiferromagnetic (AFM) interlayer interactions, while the AC stacking exhibits ferromagnetic (FM) interlayer interaction. Furthermore, the interlayer interaction can be further tuned by tensile strain and charge doping. Specifically, under large tensile strain, most stacking structures exhibit FM interlayer interactions. Conversely, under heavy electron doping, all stacking structures exhibit AFM interlayer interactions. These findings are useful for designing spintronic devices based on CrSe2.

5.
Materials (Basel) ; 16(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895682

RESUMO

Changes in the atomic and electronic structure of silicon carbide 3C-SiC (ß-SiC), resulting from lead adsorption, were studied within the density functional theory. The aim of the study was to analyze the main mechanisms occurring during the corrosion of this material. Therefore, the investigations focused on process-relevant parameters such as bond lengths, bond energies, Bader charges, and charge density differences. To compare the magnitude of the interactions, the calculations were conducted for three representative surfaces: (100, 110, and 111) with varying degrees of lead coverage. The results indicate that chemisorption occurs, with the strongest binding on the hexagonal surface (111) in interaction with three dangling bonds. The adsorption energy rises with increasing coverage, especially as the surface approaches saturation. As a result of these interactions, atomic bonds on the surface weaken, which affects the dissolution corrosion.

6.
J Phys Condens Matter ; 36(2)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748490

RESUMO

The search for suitable electrode materials is crucial for the development of high-performance Na-ion batteries (NIBs). In recent years, significant attention has been drawn to two-dimensional (2D) oxides as potential NIB electrode materials. In this study, employing the first-principles density functional theory method, we investigate the thermodynamic and kinetic properties of Na adsorption and diffusion behavior on the 2D TiO2(010) monolayer. Our findings demonstrate that the 2D anatase TiO2(010) monolayer exhibits enhanced thermodynamic stability. Furthermore, the Na atoms preferentially adsorb on the top of oxygen atoms within the TiO2(010) monolayer, and their diffusion along the [100] direction is characterized by a low energy barrier of 0.054 eV. This comprehensive analysis sheds light on the structural stability, preferred adsorption sites, and diffusion paths of Na atoms on the 2D anatase TiO2(010) monolayer, providing valuable insights into the nature of the material's structure and Na ion transport. Moreover, the 2D structure of the TiO2matrix facilitates short Na diffusion lengths and a large electrode/electrolyte interface, thereby demonstrating the potential of this material as an NIB electrode material.

7.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687773

RESUMO

Real-time monitoring of volatile organic compounds (VOCs) is crucial for both industrial production and daily life. However, the non-reactive nature of VOCs and their low concentrations pose a significant challenge for developing sensors. In this study, we investigated the adsorption behaviors of typical VOCs (C2H4, C2H6, and C6H6), on pristine and Pt-decorated SnS monolayers using density functional theory (DFT) calculations. Pristine SnS monolayers have limited charge transfer and long adsorption distances to VOC molecules, resulting in VOC insensitivity. The introduction of Pt atoms promotes charge transfer, creates new energy levels, and increases the overlap of the density of states, thereby enhancing electron excitation and improving gas sensitivity. Pt-decorated SnS monolayers exhibited high sensitivities of 241,921.7%, 35.7%, and 74.3% towards C2H4, C2H6, and C6H6, respectively. These values are 142,306.9, 23.8, and 82.6 times higher than those of pristine SnS monolayers, respectively. Moreover, the moderate adsorption energies of adsorbing C2H6 and C6H6 molecules ensure that Pt-decorated SnS monolayers possess good reversibility with a short recovery time at 298 K. When heated to 498 K, C2H4 molecules desorbs from the surface of Pt-decorated SnS monolayer in 162.33 s. Our results indicate that Pt-decorated SnS monolayers could be superior candidates for sensing VOCs with high selectivity, sensitivity, and reversibility.

8.
Nanomaterials (Basel) ; 13(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630927

RESUMO

We have simulated BiCoO3 films epitaxially grown along (001) direction with density functional theory computations. Leading candidates for the lowest-energy phases have been identified. The tensile strains induce magnetic phase transition in the ground state (P4mm symmetry) from a C-type antiferromagnetic order to a G-type order for the in-plane lattice parameter above 3.922 Å. The G-type antiferromagnetic order will be maintained with larger tensile strains; however, a continuous structural phase transition will occur, combining the ferroelectric and antiferrodistortive modes. In particular, the larger tensile strain allows an isostructural transition, the so-called Cowley's ''Type Zero'' phase transitions, from Cc-(I) to Cc-(II), with a slight volume collapse. The orientation of ferroelectric polarization changes from the out-of-plane direction in the P4mm to the in-plane direction in the Pmc21 state under epitaxial tensile strain; meanwhile, the magnetic ordering temperature TN can be strikingly affected by the variation of misfit strain.

9.
Front Chem ; 10: 1008332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176892

RESUMO

A novel single-atom catalyst of Fe adsorbed on χ3-borophene has been proposed as a potential catalyst for CO oxidation reaction (COOR). Quantitative pictures have been provided of both the stability of Fe@χ3-borophene and various kinetic reaction pathways using first-principles calculations. Strong adsorption energy of -3.19 eV and large diffusion potential of 3.51 eV indicates that Fe@χ3-borophene is highly stable. By exploring reaction mechanisms for COOR, both Eley-Ridel (E-R) and trimolecule E-R (TER) were identified as possible reaction paths. Low reaction barriers with 0.49 eV of E-R and 0.57 eV of TER suggest that Fe@χ3-borophene is a very promising catalyst for COOR. Charge transfer between the χ3-borophene and CO, O2 and CO2 gas molecules plays a key role in lowering the energy barrier during the reactions. Our results propose that Fe@χ3-borophene can be a good candidate of single-atom catalyst for COOR with both high stability and catalytic activity.

10.
ACS Appl Mater Interfaces ; 14(18): 21577-21584, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471020

RESUMO

The atomic, electronic, optical, and mechanical properties of penta-like two-dimensional PdPX (X = O, S, Te) nanosheets have been systematically investigated using density functional theory calculations. All three PdPX nanosheets exhibit dynamic and mechanical stability on the basis of an analysis of phonon dispersions and the Born criteria, respectively. The PdPX monolayers are found to be brittle structures. Our calculations demonstrate that the PdPX nanosheets exhibit semiconducting characteristics with indirect band gaps of 0.93 (1.99), 1.34 (2.11), and 0.74 (1.51) eV for X = O, S, Te, respectively, using the PBE (HSE06) functional, where PdPTe is the best material for visible-light photocatalytic water splitting. Our findings give important basic characteristics of penta-like two-dimensional PdPX materials and should motivate further theoretical and experimental investigations of these interesting materials.

11.
J Colloid Interface Sci ; 607(Pt 2): 1551-1561, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587530

RESUMO

Electrochemical nitrogen reduction reaction (NRR) in ambient condition is an efficient and sustainable method to synthesize NH3. In this work, first-principles study was used to discuss the NRR process on B atom doped SbN monolayer. The adsorption of N2 on B-Sb17N18 and B-S18N17 was calculated including the adsorption energy, adsorption distance, and the charge density difference (CDD). Five different reaction pathways of NRR were taken into consideration and the stability of B-SbN was investigated. The results show that, because the energy of unoccupied orbital in sp3 hybridization of B atom is much lower than that in 2pz orbitals, the adsorption of N2 on B-Sb18N17 shows much larger adsorption energy (-1.01 eV with end-on pattern) compared to that of the adsorption on B-Sb17N18. For five different pathways, the 1, 2, and 4 pathways have a smaller limiting potential of about 0.52 V and the limiting step is: *N2 + H+ + e- â†’ *NNH. The 3 and 5 pathways have a larger limiting potential of 0.57 V with hydrogenation step: *NHNH2 + H+ + e- â†’ *NH2NH2. The B-Sb18N17 is structurally and thermally stable even at 500 K. Our theoretical prediction indicates that B atom substitutionally doped SbN monolayer can be a kind of high-performance metal-free NRR catalyst for NH3 synthetization, and the work provides attempts for designing and exploring 2D metal-free NRR catalysts.

12.
Nanomaterials (Basel) ; 11(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34684918

RESUMO

Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical specific capacity and theoretical energy density. However, their commercialization is hindered by the shuttle effect caused by the dissolution of lithium polysulfide. To solve this problem, a method is proposed to improve the performance of Li-S batteries using Ti2N(Ti2NS2) with S-functional groups as the sulfur cathode host material. The calculation results show that due to the mutual attraction between Li and S atoms, Ti2NS2 has the moderate adsorption energies for Li2Sx species, which is more advantageous than Ti2NO2 and can effectively inhibit the shuttle effect. Therefore, Ti2NS2 is a potential cathode host material, which is helpful to improve the performance of Li-S batteries. This work provides a reference for the design of high-performance sulfur cathode materials.

13.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685153

RESUMO

Low-toxicity, air-stable cesium bismuth iodide Cs3Bi2X9 (X = I, Br, and Cl) perovskites are gaining substantial attention owing to their excellent potential in photoelectric and photovoltaic applications. In this work, the lattice constants, band structures, density of states, and optical properties of the Cs3Bi2X9 under high pressure perovskites are theoretically studied using the density functional theory. The calculated results show that the changes in the bandgap of the zero-dimensional Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites are 3.05, 1.95, and 2.39 eV under a pressure change from 0 to 40 GPa, respectively. Furthermore, it was found that the optimal bandgaps of the Shockley-Queisser theory for the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites can be reached at 2-3, 21-26, and 25-29 GPa, respectively. The Cs3Bi2I9 perovskite was found to transform from a semiconductor into a metal at a pressure of 17.3 GPa. The lattice constants, unit-cell volume, and bandgaps of the Cs3Bi2X9 perovskites exhibit a strong dependence on dimension. Additionally, the Cs3Bi2X9 perovskites have large absorption coefficients in the visible region, and their absorption coefficients undergo a redshift with increasing pressure. The theoretical calculation results obtained in this work strengthen the fundamental understanding of the structures and bandgaps of Cs3Bi2X9 perovskites at high pressures, providing a theoretical support for the design of materials under high pressure.

14.
J Phys Condens Matter ; 34(1)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34571501

RESUMO

In a very recent accomplishment, the two-dimensional form of biphenylene network (BPN) has been fabricated. Motivated by this exciting experimental result on 2D layered BPN structure, herein we perform detailed density-functional theory-based first-principles calculations, in order to gain insight into the structural, mechanical, electronic and optical properties of this promising nanomaterial. Our theoretical results reveal the BPN structure is constructed from three rings of tetragon, hexagon and octagon, meanwhile the electron localization function shows very strong bonds between the C atoms in the structure. The dynamical stability of BPN is verified via the phonon band dispersion calculations. The mechanical properties reveal the brittle behavior of BPN monolayer. The Young's modulus has been computed as 0.1 TPa, which is smaller than the corresponding value of graphene, while the Poisson's ratio determined to be 0.26 is larger than that of graphene. The band structure is evaluated to show the electronic features of the material; determining the BPN monolayer as metallic with a band gap of zero. The optical properties (real and imaginary parts of the dielectric function, and the absorption spectrum) uncover BPN as an insulator along thezzdirection, while owning metallic properties inxxandyydirections. We anticipate that our discoveries will pave the way to the successful implementation of this 2D allotrope of carbon in advanced nanoelectronics.

15.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443949

RESUMO

Ultrathin inorganic halogenated perovskites have attracted attention owing to their excellent photoelectric properties. In this work, we designed two types of Ruddlesden-Popper hybrid perovskites, Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, and studied their band structures and band gaps as a function of the number of layers (n = 1-5). The calculation results show that Csn+1SnnBr3n+1 has a direct bandgap while the bandgap of CsnSnn+1Br3n+2 can be altered from indirect to direct, induced by the 5p-Sn state. As the layers increased from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. In addition, the optical absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was blue-shifted as the structure changed from bulk to nanolayer. Compared with that of Csn+1SnnBr3n+1, the optical absorption of CsnSnn+1Br3n+2 was sensitive to the layers along the z direction, which exhibited anisotropy induced by the SnBr2-terminated surface.

16.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070433

RESUMO

Defects and in-plane strain have significant effects on the electronic properties of two-dimensional nanostructures. However, due to the influence of substrate and environmental conditions, defects and strain are inevitable during the growth or processing. In this study, hybrid density functional theory was employed to systematically investigate the electronic properties of boron-phosphide monolayers tuned by the in-plane biaxial strain and defects. Four types of defects were considered: B-vacancy (B_v), P-vacancy (P_v), double vacancy (D_v), and Stone-Wales (S-W). Charge density difference and Bader charge analysis were performed to characterize the structural properties of defective monolayers. All of these defects could result in the boron-phosphide monolayer being much softer with anisotropic in-plane Young's modulus, which is different from the isotropic modulus of the pure layer. The calculated electronic structures show that the P_v, D_v, and S-W defective monolayers are indirect band gap semiconductors, while the B_v defective system is metallic, which is different from the direct band gap of the pure boron-phosphide monolayer. In addition, the in-plane biaxial strain can monotonically tune the band gap of the boron-phosphide monolayer. The band gap increases with the increasing tension strain, while it decreases as the compression strain increases. Our results suggest that the defects and in-plane strain are effective for tuning the electronic properties of the boron-phosphide monolayer, which could motivate further studies to exploit the promising application in electronics and optoelectronics based on the boron-phosphide monolayer.

17.
Chemosphere ; 275: 130057, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33667766

RESUMO

Selenium (Se) species can deposit in selective catalytic reduction (SCR) system during the denitrification process, which is harmful to the catalyst. To improve the Se-poisoning resistance of SCR catalysts, the influence mechanism of Se species on vanadium-titanium-based catalysts should be elucidated from an atomic scale. In this paper, theoretical calculations were conducted to reveal the adsorption and interaction mechanism of Se species on V2O5-WO3(MoO3)/TiO2 surface based on the first-principles. The impact of Se species on the electronic structure of the catalyst was investigated from electron transfer, bond formation, and VO site activity. The results show that the adsorption of elementary Se (Se0) belongs to chemisorption, while SeO2 can undergo both physisorption and chemisorption. For the chemisorption of Se species, obvious charge transfer with the catalyst is observed and Se-O bond is formed, which enhances the oxidation activity of the catalyst, triggers the reaction of Se0 and SeO2 with the catalyst components to generate SeVOx and SeW(Mo)Ox. The active sites are thereby damaged and the SCR performance is reduced. The above conclusions are mutually confirmed with the previous experimental research. By studying the correlation with the adsorption energies of Se species, descriptors manifesting the Se species adsorption were initially investigated to unveil the relationship between the electronic structure and the adsorption energy. Finally, the influence of temperature on Se adsorption was investigated. The adsorption can only proceed spontaneously below 500 K and is inhibited at high temperatures.


Assuntos
Selênio , Compostos de Vanádio , Adsorção , Amônia , Catálise , Oxirredução , Titânio
18.
Nanotechnology ; 32(23)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33647888

RESUMO

We studied the structural, electronic, and optical characters of SiS2, a new type of group IV-VI two-dimensional semiconductor, in this article. We focused on monolayer SiS2and its characteristic changes when different strains are applied on it. Results reveal that the monolayer SiS2is dynamically stable when no strain is applied. In terms of electronic properties, it remains a semiconductor under applied strain within the range from -10% to 10%. Besides, its indirect band-gap is altered regularly after applying a strain, whereas different strains lead to various changing trends. As for its optical properties, it exhibits remarkable transparency for infrared and most visible light. Its main absorption and reflection regions lie in the blue and ultraviolet areas. The applied uniaxial strain causes its different optical properties along the armchair direction and zigzag direction. Moreover, the tensile strain could tune its optical properties more effectively than the compressive strain. When different strains are applied, the major changes are in blue and ultraviolet regions, but only minor changes can be found in infrared and visible regions. So its optical properties reveal good stability in infrared and visible regions. Therefore, SiS2has a promising prospect in nano-electronic and nano-photoelectric devices.

19.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557262

RESUMO

The toxic gas carbon monoxide (CO) is fatal to human beings and it is hard to detect because of its colorless and odorless properties. Fortunately, the high surface-to-volume ratio of the gas makes two-dimensional (2D) materials good candidates for gas sensing. This article investigates CO sensing efficiency with a two-dimensional monolayer of gallium selenide (GaSe) via the vacancy defect and strain effect. According to the computational results, defective GaSe structures with a Se vacancy have a better performance in CO sensing than pristine ones. Moreover, the adsorption energy gradually increases with the scale of tensile strain in defective structures. The largest adsorption energy reached -1.5 eV and the largest charger transfer was about -0.77 e. Additionally, the CO gas molecule was deeply dragged into the GaSe surface. We conclude that the vacancy defect and strain effect transfer GaSe to a relatively unstable state and, therefore, enhance CO sensitivity. The adsorption rate can be controlled by adjusting the strain scale. This significant discovery makes the monolayer form of GaSe a promising candidate in CO sensing. Furthermore, it reveals the possibility of the application of CO adsorption, transportation, and releasement.


Assuntos
Monóxido de Carbono/análise , Gálio/química , Selênio/química , Adsorção , Monóxido de Carbono/química , Limite de Detecção , Modelos Moleculares , Conformação Molecular
20.
J Mol Graph Model ; 104: 107835, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444978

RESUMO

Weak interactions play a very important role in the fields of supramolecular chemistry, molecular physics, materials science, etc. They have a great impact on the structure of the compounds in the gas, liquid and solid phases and the mechanism of some reaction processes. In this study, we visualized the intermolecular interactions between H2O and different graphene systems through density functional theory. Because the surface of Graphene oxide (GO) has epoxy groups, hydroxyl groups, and other oxygen-containing groups. These groups are prone to hydrogen bonding with hydrogen atoms of H2O, and we further explain some of them based on the acid-base theory. Also, we obtained the components of interactions between different graphene complex and H2O by energy decomposition. Then we found that for systems with moderate strength hydrogen bonding, such as hydroxyl functional group systems, electrostatic attraction is dominant while the dispersion attraction and induction function play an auxiliary role together.


Assuntos
Grafite , Ligação de Hidrogênio , Radical Hidroxila , Oxigênio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA