Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 13(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35206700

RESUMO

Fish discards are organic waste with high and good-quality protein levels, as well as a fatty acid profile rich in n-3 LCPUFAs, mainly eicosapentaenoic acid and docosahexaenoic acid. These discards can be used as food for Tenebrio molitor (Linnaeus, 1758) larvae, thus increasing the nutritional value of this insect. This study focused on increasing larval acceptance of fish through different pre-treatments of the diets provided, as well as increasing the accumulation of EPA and DHA in fish-fed larvae. Four different diets were prepared: control (broiler feed), DGF50: 50% dried ground fish (Pagellus bogaraveo, Brünnich, 1768) + 50% broiler feed, for different periods, FGF100: 100% fresh ground P. bogaraveo and DUF100: 100% dried whole unground P. bogaraveo. Growth, mortality, proximate composition, fatty acid profile and lipid nutritional indices were determined. Larvae fed with FGF100 displayed better results among treatments, doubling the initial weight, as well as increasing their protein level and decreasing fat levels. Regarding fatty acids, eicosapentaenoic acid and docosahexaenoic acid were only detected in larvae fed with a fish-based diet for a period longer than 5 days. These results show that pre-treatment of fish-based diets causes changes in the growth and compositional parameters of T. molitor larvae.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835621

RESUMO

This review summarizes the results reported on the production of biphasic calcium phosphate (BCP) materials derived from fish wastes (i.e., heads, bones, skins, and viscera), known as fish discards, and offers an in-depth discussion on their promising potential for various applications in many fields, especially the biomedical one. Thus, considerable scientific and technological efforts were recently focused on the capability of these sustainable materials to be transformed into economically attractive and highly valuable by-products. As a consequence of using these wastes, plenty of beneficial social effects, with both economic and environmental impact, will arise. In the biomedical field, there is a strong and continuous interest for the development of innovative solutions for healthcare improvement using alternative materials of biogenic origin. Thus, the orthopedic field has witnessed a significant development due to an increased demand for a large variety of implants, grafts, and/or scaffolds. This is mainly due to the increase of life expectancy and higher frequency of bone-associated injuries and diseases. As a consequence, the domain of bone-tissue engineering has expanded to be able to address a plethora of bone-related traumas and to deliver a viable and efficient substitute to allografts or autografts by combining bioactive materials and cells for bone-tissue ingrowth. Among biomaterials, calcium phosphate (CaP)-based bio-ceramics are widely used in medicine, in particular in orthopedics and dentistry, due to their excellent bioactive, osteoconductive, and osteointegrative characteristics. Recently, BCP materials (synthetic or natural), a class of CaP, which consist of a mixture of two phases, hydroxyapatite (HA) and beta tricalcium phosphate (ß-TCP), in different concentrations, gained increased attention due to their superior overall performances as compared to single-phase formulations. Moreover, the exploitation of BCP materials from by-products of fish industry was reported to be a safe, cheap, and simple procedure. In the dedicated literature, there are many reviews on synthetic HA, ß-TCP, or BCP materials, but to the best of our knowledge, this is the first collection of results on the effects of processing conditions on the morphological, compositional, structural, mechanical, and biological properties of the fish discard-derived BCPs along with the tailoring of their features for various applications.

3.
Foods ; 9(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899847

RESUMO

In the current work, we study the capacity of 30 peptones obtained by enzyme proteolysis of ten discarded fish species (hake, megrim, red scorpionfish, pouting, mackerel, gurnard, blue whiting, Atlantic horse mackerel, grenadier, and boarfish) to support the growth and metabolite production of four lactic acid bacteria (LAB) of probiotic and technological importance. Batch fermentations of Lactobacillus plantarum, L. brevis, L. casei, and Leuconostoc mesenteroides in most of the media formulated with fish peptones (87% of the cases) led to similar growths (quantified as dry-weight biomass and viable cells) and metabolites (mainly lactic acid) than in commercial control broth (MRS). Comparisons among cultures were performed by means of the parameters obtained from the mathematical fittings of experimental kinetics to the logistic equation. Modelling among experimental and predicted data from each bioproduction was generally accurate. A simple economic assessment demonstrated the profitability achieved when MRS is substituted by media formulated with fish discards: a 3-4-fold reduction of costs for LAB biomass, viable cells formation, and lactic and acetic acid production. Thus, these fish peptones are promising alternatives to the expensive commercial peptones as well as a possible solution to valorize discarded fish biomasses and by-products.

4.
Microorganisms ; 8(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722528

RESUMO

The industrial production of marine bacteria with probiotic properties is limited by the excessive cost of the culture media adequate for their growth. The present work aimed to study the suitability of 30 marine media formulated with nitrogen sources (fish peptones) from different fish discards and seawater, for the growth of two marine probiotic bacteria (MPB), namely Phaeobacter sp. and Pseudomonas fluorescens. These fish peptones were produced from several discarded fish and by-products (heads, skins, and whole individuals of megrim, mackerel, gurnard, hake, etc.). In all cultivations, no significant differences were found on cell viability when the microorganism grew on commercial or alternative media. In relation to the biomass production, the growth of Phaeobacter sp. on waste media was commonly similar or a 20% lower than observed in the control cultures. For P. fluorescens, various peptones (skin peptones of pouting and blue whiting) showed even higher productive ability than commercial peptones. An initial economical evaluation revealed that low-cost media reduced until 120 times the cost of production of MPB.

5.
Mar Drugs ; 18(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033070

RESUMO

Fish processing industries generate a large volume of discards. In order to fulfil with the principles of a sustainable circular economy, it is necessary to maintain aquaculture by-products in the food chain through the production of high-value biomolecules that can be used as novel ingredients. In this study, we try to give value to the gilthead sea bream by-products, evaluating the composition and the nutritional value of the muscle and six discards commonly obtained from the fish processing industry (fishbone, gills, guts, heads, liver, and skin), which represent ≈ 61% of the whole fish. Significant differences were detected among muscle and by-products for fatty acid and amino acid profile, as well as mineral content. The discards studied were rich in protein (10%-25%), showing skin and fishbone to have the highest contents. The amino acid profile reflected the high quality of its protein, with 41%-49% being essential amino acids-lysine, leucine, and arginine were the most abundant amino acids. Guts, liver, and skin were the fattiest by-products (25%-35%). High contents of polyunsaturated fatty acids (PUFAs) (31%-34%), n-3 fatty acids (12%-14%), and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (6%-8%) characterized these discards. The head displayed by far the highest ash content (9.14%), which was reflected in the mineral content, especially in calcium and phosphorous. These results revealed that gilthead sea bream by-products can be used as source of value-added products such as protein, oils, and mineral supplements.


Assuntos
Peixes , Nutrientes/análise , Valor Nutritivo , Aminoácidos , Animais , Aquicultura , Composição Corporal , Dissecação , Ácidos Graxos , Manipulação de Alimentos , Minerais , Dourada
6.
Polymers (Basel) ; 11(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514432

RESUMO

In order to promote sustainable fishing practices within European fishing fleets and to avoid the large waste of valuable fish biomass through the practice of fish discarding, the new reform of the common fisheries policy includes the obligation of landing all species under total allowable catch (TAC) regulations. The new policy also prohibits the use of specimens under minimum conservation reference size for direct human cons38umption. In this context, it is necessary to find new uses for undersized fish, which might help to alleviate the costs associated with the landing obligation but without prompting the creation of a market. European hake (EH) (Merluccius merluccius), which is one of the most important commercial fish species for the Spanish fishing industry, with a total TAC for 2018 of 3,7423 t, is used for this study. Consistent with the current policy framework and taking into account the commercial importance of this species, the aim of this work is to study a new strategy for the extraction of collagen from the skin and bone fraction of Merluccius merluccius undersized discards. Three collagen fractions are successfully isolated for the first time from the skin of M. merluccius skin and bone discarded raw material: acid-soluble collagen (ASC) fraction 1 and pepsin-soluble collagen (PSC) fraction 2 from the skin and ASC fraction 3 from bones. The total collagen yield of the process is 13.55 ± 3.18% in a dry basis (g collagen/100 g of skin and bone fraction (SBF)) and 47.80 ± 9.83% (g collagen/100 g of collagen determined by the hydroxyproline content in SBF). The three fractions are further characterized by using different physical and chemical analysis techniques, with the conclusion drawn that the triple helix structure is preserved in the three fractions, although ASC fractions (F1 and F3) present more or stronger hydrogen bonds than the PSC fraction (F2). With the process herein presented, deboned and skinned hake specimens could represent an interesting source of high quality type I collagen, which could be useful as a raw material for the biomedical, cosmetic, and nutraceutical industries.

7.
Mar Drugs ; 17(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818811

RESUMO

The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.


Assuntos
Produtos Biológicos/isolamento & purificação , Ácidos Graxos Ômega-3/isolamento & purificação , Peixes , Peptonas/isolamento & purificação , Hidrolisados de Proteína/isolamento & purificação , Animais , Anti-Hipertensivos/economia , Anti-Hipertensivos/isolamento & purificação , Anti-Hipertensivos/farmacologia , Antioxidantes/economia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Bactérias/metabolismo , Produtos Biológicos/economia , Produtos Biológicos/farmacologia , Ácidos Graxos Ômega-3/economia , Ácidos Graxos Ômega-3/farmacologia , Fermentação , Pesqueiros/economia , Cabeça , Hidrólise , Peptonas/economia , Peptonas/farmacologia , Hidrolisados de Proteína/economia , Hidrolisados de Proteína/farmacologia , Pele/química , Espanha
8.
Mar Drugs ; 17(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634550

RESUMO

The small-spotted catshark is one of the most abundant elasmobranchs in the Northeastern Atlantic Ocean. Although its landings are devoted for human consumption, in general this species has low commercial value with high discard rates, reaching 100% in some European fisheries. The reduction of post-harvest losses (discards and by-products) by promotion of a full use of fishing captures is one of the main goals of EU fishing policies. As marine collagens are increasingly used as alternatives to mammalian collagens for cosmetics, tissue engineering, etc., fish skins represent an excellent and abundant source for obtaining this biomolecule. The aim of this study was to analyze the influence of chemical treatment concentration, temperature and time on the extractability of skin collagen from this species. Two experimental designs, one for each of the main stages of the process, were performed by means of Response Surface Methodology (RSM). The combined effect of NaOH concentration, time and temperature on the amount of collagen recovered in the first stage of the collagen extraction procedure was studied. Then, skins treated under optimal NaOH conditions were subjected to a second experimental design, to study the combined effect of AcOH concentration, time and temperature on the collagen recovery by means of yield, amino acid content and SDS-PAGE characterization. Values of independent variables maximizing collagen recovery were 4 °C, 2 h and 0.1 M NaOH (pre-treatment) and 25 °C, 34 h and 1 M AcOH (collagen extraction).


Assuntos
Fracionamento Químico/métodos , Colágeno/química , Tubarões , Pele/química , Animais
9.
J Food Sci Technol ; 55(11): 4477-4484, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333644

RESUMO

The progressive elimination of fish discards established by the European Union Council in 2013 has stimulated the valorization of flesh from discarded high-quality species with good protein functional properties but which frequently have excessive fish-bones, fat, strange flavours, soft texture, etc. The present study therefore focuses on valorization of the extracted muscle (minced muscle), from several fish species frequently discarded in north-western Spanish fisheries (Atlantic Ocean): Blue whiting (Micromesistius poutassou), Mackerel (Scomber scombrus), Red scorpionfish (Scorpaena scrofa), Pouting (Trisoreptus luscus) and Gurnard (Trigla spp.). Valorization of these discarded fish resources is a key objective for the survival of the fishery sector in this area. In this regard present study was planned to examine the behaviour of the mince during 6 months of frozen storage by means of physicochemical and sensory analyses, and to test consumer acceptance of three technologically different products (burgers, nuggets and structured fingers) prepared with fish mince from different species. Results indicated that protein aggregation started at the outset of frozen storage but progressed very slowly, with the exception of non-washed blue whiting and red scorpionfish minces. Moreover, during frozen storage lipid oxidation increased in all samples; the increase was with two objectives highest in minced mackerel, a fatty fish, but no rancid flavour was detected. All mince samples presented acceptable physicochemical properties and good sensory acceptability after 6 months of frozen storage. Acceptability of final products made with these minces was high in all cases. Burgers were more acceptable for consumers aged over 40 and fingers and nuggets more for younger people.

10.
Mar Drugs ; 15(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994711

RESUMO

Fish discards are of major concern in new EU policies. Alternatives for the management of the new biomass that has to be landed is compulsory. The production of bioactive compounds from fish protein hydrolysates (FPH) has been explored in recent years. However, the viability of Scyliorhinus canicula discards, which might account for up to 90-100% of captures in mixed trawler, gillnet, and longline industrial fisheries, to produce FPH from the muscle with bioactivities has still not been studied in terms of the optimization of the experimental conditions to enhance its production. The effect of pH and temperature on the hydrolysis of the S.canicula muscle was mediated by three commercial proteases using response surface methodology. Temperatures of 64.6 °C and 60.8 °C and pHs of 9.40 and 8.90 were established as the best hydrolysis conditions for Alcalase and Esperase, respectively. Optimization of the best conditions for the maximization of antihypertensive and antioxidant activities was performed. Higher Angiotensin-converting enzyme (ACE) activity was found with Esperase. The pH optimum and temperature optimum for antioxidants were 55 °C/pH8.0 for ABTS/DPPH-Esperase, 63.1 °C/pH9.0 for DPPH-Alcalase, and 55 °C/pH9.0 for ABTS-Alcalase. No hydrolysis was detected when using Protamex.


Assuntos
Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Elasmobrânquios/metabolismo , Hidrolisados de Proteína/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/metabolismo , Antioxidantes/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Peptídeo Hidrolases/metabolismo , Hidrolisados de Proteína/metabolismo , Temperatura , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA