Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evolution ; 76(3): 528-540, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989408

RESUMO

Mutation accumulation (MA) experiments, in which de novo mutations are sampled and subsequently characterized, are an essential tool in understanding the processes underlying evolution. In microbial populations, MA protocols typically involve a period of population growth between severe bottlenecks, such that a single individual can form a visible colony. While it has long been appreciated that the action of positive selection during this growth phase cannot be eliminated, it is typically assumed to be negligible. Here, we quantify the effect of both positive and negative selection in MA studies, demonstrating that selective effects can substantially bias the distribution of fitness effects (DFE) and mutation rates estimated from typical MA protocols in microbes. We then present a simple correction for this bias that applies to both beneficial and deleterious mutations, and can be used to correct the observed DFE in multiple environments. We use simulated MA experiments to illustrate the extent to which the MA-inferred DFE differs from the underlying true DFE, and demonstrate that the proposed correction accurately reconstructs the true DFE over a wide range of scenarios; we also provide an example of these corrections applied to experimental data. These results highlight that positive selection during microbial MA experiments is in fact not negligible, but can be corrected to gain a more accurate understanding of fundamental evolutionary parameters.


Assuntos
Aptidão Genética , Acúmulo de Mutações , Mutação , Taxa de Mutação , Viés de Seleção , Seleção Genética
2.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849876

RESUMO

Understanding how mutations affect survivability is a key component to knowing how organisms and complex traits evolve. However, most mutations have a minor effect on fitness and these effects are difficult to resolve using traditional molecular techniques. Therefore, there is a dire need for more accurate and precise fitness measurements methods. Here, we measured the fitness effects in Burkholderia cenocepacia HI2424 mutation accumulation (MA) lines using droplet-digital polymerase chain reaction (ddPCR). Overall, the fitness measurements from ddPCR-MA are correlated positively with fitness measurements derived from traditional phenotypic marker assays (r = 0.297, P = 0.05), but showed some differences. First, ddPCR had significantly lower measurement variance in fitness (F = 3.78, P < 2.6 × 10-13) in control experiments. Second, the mean fitness from ddPCR-MA measurements were significantly lower than phenotypic marker assays (-0.0041 vs -0.0071, P = 0.006). Consistent with phenotypic marker assays, ddPCR-MA measurements observed multiple (27/43) lineages that significantly deviated from mean fitness, suggesting that a majority of the mutations are neutral or slightly deleterious and intermixed with a few mutations that have extremely large effects. Of these mutations, we found a significant excess of mutations within DNA excinuclease and Lys R transcriptional regulators that have extreme deleterious and beneficial effects, indicating that modifications to transcription and replication may have a strong effect on organismal fitness. This study demonstrates the power of ddPCR as a ubiquitous method for high-throughput fitness measurements in both DNA- and RNA-based organisms regardless of cell type or physiology.


Assuntos
Burkholderia cenocepacia/genética , Aptidão Genética , Acúmulo de Mutações , Taxa de Mutação , Fenótipo , Reação em Cadeia da Polimerase/métodos
3.
Genome Biol Evol ; 7(7): 1887-95, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26085542

RESUMO

The nature of selection acting on a population is in large measure determined by the distribution of fitness effects of new mutations. In this study, we use DNA sequences from four closely related clades of Saccharomyces paradoxus and Saccharomyces cerevisiae to identify and polarize new mutations and estimate their fitness effects. By progressively restricting the analyses to narrower categories of sites, we further seek to characterize sites with predictable mutational effects, that is, unconditionally deleterious, neutral or beneficial. Consistent with previous studies on S. paradoxus, we have failed to find evidence for mutations with beneficial effects, even in regions that were divergent in two outgroup clades, perhaps a consequence of the relatively unchallenged, predominantly asexual and highly inbred lifestyle of this species. On the other hand, there is abundant evidence of deleterious mutations, varying in severity of effect from strongly deleterious to very mild, particularly in regions conserved in the outgroup taxa, indicating a history of persistent purifying selection. Narrowing the analysis down to individual amino acids reduces further the range of effects: for example, mutations changing cysteine are predicted to be nearly always strongly deleterious, whereas those changing arginine, serine, and tyrosine are expected to be nearly neutral. The proportion of mutations with deleterious effects for a particular amino acid is correlated with long-term stasis of that amino acid among highly divergent sequences from a variety of organisms, showing that functionality of sites tends to persist through the diversification of clades and that our findings are also relevant to longer evolutionary times and other taxa.


Assuntos
Aptidão Genética , Mutação , Saccharomyces/genética , Alelos , Aminoácidos/genética , Códon , Evolução Molecular , Modelos Genéticos , Nucleotídeos/análise , Filogenia , Polimorfismo Genético , Saccharomyces/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA