Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Chemosphere ; : 143003, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097113

RESUMO

Complexing agents (CAs) can be used for the removal of Cr(VI) via nanoscale Fe0 (nZVI) reduction in cost-effective manner. However, nZVI is prone to aggregation and passivation, and some conventional CAs are toxic and difficult to biodegrade, potentially causing secondary pollution. Therefore, selecting an environmentally friendly CA for assisting in the removal of Cr(VI) via supported nZVI is imperative. Herein, NaA molecular sieve membrane-supported nZVI (nZVI/NaA-NF) was prepared via the secondary growth and liquid-phase reduction method using nickel foam (NF) as the carrier. The physicochemical characteristics of nZVI/NaA-NF before and after reaction were analysed via SEM, EDS, and XPS. A CA-improved nZVI/NaA-NF was used for the effective removal of Cr(VI) in a continuous fixed-bed system. Furthermore, the influences of various experimental factors including the CA type, CA concentration, solution pH, space velocity, and inlet Cr(VI) concentration on Cr(VI) removal were systematically investigated. The results demonstrated that nZVI particles were homogeneously immobilized on the NaA molecular sieve membrane/NF for fresh nZVI/NaA-NF, and tetrasodium iminidisuccinate (IDS-4Na) inhibited the aggregation of Cr(III)/Fe(III) (hydr)oxide precipitates during the reaction. IDS-4Na demonstrated excellent promotive effect on Cr(VI) removal via nZVI/NaA-NF. The breakthrough time for Cr(VI) in the addition of IDS-4Na was considerably longer than that of nZVI/NaA-NF alone. The breakthrough concentration of Cr(VI) only reached 1.1% and 9.9% of the inlet concentration at 220 and 240 min, with an IDS-4Na concentration of 4 mM, a pH of 2.5, and a space velocity of 0.265 min-1. The Bohart-Adams model was appropriate to predict the initial part of Cr(VI) breakthrough curves in the nZVI/NaA-NF fixed bed. The saturated concentration (N0) increased with an increase in inlet Cr(VI) concentration. The Yoon-Nelson model afforded good fitting results for all breakthrough curves of Cr(VI). The k´ value increased with an increase in space velocity, and the τ value decreased.

2.
Sci Rep ; 14(1): 18102, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103501

RESUMO

Water contaminated with arsenic presents serious health risks, necessitating effective and sustainable removal methods. This article proposes a method for removing arsenic from water by impregnating biochar with iron oxide (Fe2O3) from brown seaweed (Sargassum polycystum). After the seaweed biomass was pyrolyzed at 400 °C, iron oxide was added to the biochar to increase its adsorptive sites and surface functional groups, which allowed the binding of arsenic ions. Batch studies were conducted to maximize the effects of variables, including pH, contact time, arsenic concentration, and adsorbent dosage, on arsenic adsorption. The maximum arsenic adsorption efficiency of 96.7% was achieved under optimal conditions: pH 6, the adsorbent dosage of 100 mg, the initial arsenic concentration of 0.25 mg/L, and a contact time of 90 min. Langmuir and Freundlich's isotherms favored the adsorption process, while the kinetics adhered to a pseudo-second-order model, indicating chemisorption as the controlling step. Column studies revealed complete saturation after 200 min, and the adsorption behavior fits both the Adams-Bohart and Thomas models, demonstrating the potential for large-scale application. The primary mechanism underlying the interaction between iron-modified biochar and arsenic ions is surface complexation, enhanced by increased surface area and porosity. This study highlights the significant contribution of iron-modified biochar derived from macroalgae as an effective and sustainable solution for arsenic removal from water.


Assuntos
Arsênio , Carvão Vegetal , Compostos Férricos , Alga Marinha , Poluentes Químicos da Água , Purificação da Água , Arsênio/química , Arsênio/isolamento & purificação , Carvão Vegetal/química , Alga Marinha/química , Adsorção , Compostos Férricos/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Concentração de Íons de Hidrogênio
3.
Water Res ; 261: 121998, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996735

RESUMO

The presence of active pharmaceutical ingredients (APIs) in wastewater effluents and natural aquatic systems threatens ecological and human health. While activated carbon-based adsorbents, such as GAC and PAC, are widely used for API removal, they exhibit certain deficiencies, including reduced performance due to the presence of natural organic macromolecules (NOMs) and high regeneration costs. There is growing demand for a robust, stable, and self-regenerative adsorbent designed for API removal in various environments. In this study, we synthesized a self-generating metal oxide nano-composite (S-MGC) containing titanium dioxide (TiO2) and silicon dioxide (SiO2) combined with 3D graphene oxide (GO) to adsorb APIs and undergo regeneration via light illumination. We determined optimal TiO2:SiO2:GO compositions for the S-MGCs through experiments using a model contaminant, methylene blue. The physical and chemical properties of S-MGCs were characterized, and their adsorption and photodegradation capabilities were studied using five model APIs, including sulfamethoxazole, carbamazepine, ketoprofen, valsartan, and diclofenac, both in single-component and multi-component mixtures. In the absence of TiO2/SiO2, 3D graphene oxide (CGB) displayed better adsorption performance compared to GAC, and S-MGCs further improve CGB's adsorption capacity. This performance remained consistent in two complex water environments: aqueous solutions at varying NOM levels and artificial urine. TiO2 supported on the GO surface exhibits similar photocatalytic activity to suspended TiO2. In a continuous fixed-bed column test, S-MGCs demonstrated robust API adsorption performance that is maintained in the presence of NOM or urine, and can be regenerated through multiple cycles of adsorption and light illumination.


Assuntos
Grafite , Poluentes Químicos da Água , Grafite/química , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Preparações Farmacêuticas/química , Dióxido de Silício/química , Titânio/química
4.
Environ Res ; 261: 119696, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068970

RESUMO

The widespread use of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a weedkiller has resulted in its persistence in the environment, leading to surface and groundwater pollution. In this study, the fixed bed column experiments were performed to remove 2,4-D from aqueous solutions using magnetic activated carbon derived from Peltophorum pterocarpum tree pods. The evaluation was done on effects of operating parameters such as bed depth (2-4 cm), influent flow rate (4.6-11.4 mL/min), and 2,4-D concentration (25-100 mg/L) on the breakthrough curves. The data fit well with the Yoon-Nelson and Thomas models, exhibiting high R2 values. Results indicated that lower flow rates, lower 2,4-D concentrations, and greater bed depths enhanced adsorption capacity, achieving up to 196.31 mg/g. Reusability studies demonstrated the material's potential for repeated use, while toxicity studies with Vigna radiata seeds confirmed the effectiveness of Fe3O4-CPAC in removing 2,4-D. This investigation highlights the promising application of Fe3O4-CPAC in fixed bed adsorption systems for efficient 2,4-D removal.

5.
Environ Res ; 260: 119588, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019136

RESUMO

The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-h at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27 cm) and shoot (17.64 ± 0.35 cm) growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.

6.
Environ Sci Pollut Res Int ; 31(35): 48014-48026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017874

RESUMO

Under the background of the continuous rise of CO2 annual emissions, the development of CO2 capture and utilization technology is urgent. This study focuses on improving the catalytic capacity of the catalyst for CO2 hydrogenation, improving the efficiency of CO2 conversion to methanol, and converting H2 into chemical substances to avoid the danger of H2 storage. Based on the concept of element sharing, the ASMZ (Aluminum Shares Metal Zeolite catalysts) series catalyst was prepared by combining the CuO-ZnO-Al2O3 catalyst with the ZSM-5 zeolite using the amphoteric metal properties of the Al element. The basic structural properties of ASMZ catalysts were compared by XRD, FTIR, and BET characterization. Catalytic properties of samples were measured on a micro fixed-bed reactor. The catalytic mechanism of the catalyst was further analyzed by SEM, TEM, XPS, H2-TPR, and NH3-TPD. The results show that the ASMZ3 catalyst had the highest CO2 conversion rate (26.4%), the highest methanol selectivity (76.0%), and the lowest CO selectivity (15.3%) in this study. This is mainly due to the fact that the preparation method in this study promotes the exposure of effective weakly acidic sites and medium strength acidic sites (facilitating the hydrogenation of CO2 to methanol). At the same time, the close binding of Cu-ZnO-Al2O3 (CZA) and ZSM-5 zeolite also ensures the timely transfer of catalytic products and ensures the timely play of various catalytic active centers. The preparation method of the catalyst in this study also provides ideas for the preparation of other catalysts.


Assuntos
Dióxido de Carbono , Zeolitas , Catálise , Dióxido de Carbono/química , Hidrogenação , Zeolitas/química , Metanol/química
7.
Environ Sci Pollut Res Int ; 31(35): 48674-48686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037629

RESUMO

Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, Co = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, Co = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R2 > 0.4 and X2 < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose-Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R2 = 0.993, X2 = 0.0032 (pilot-scale) and R2 = 0.986, X2 = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed.


Assuntos
Celulose , Ciprofloxacina , Aprendizado de Máquina , Redes Neurais de Computação , Ciprofloxacina/química , Adsorção , Celulose/química , Saccharum/química , Poluentes Químicos da Água
8.
Sci Rep ; 14(1): 14888, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937613

RESUMO

This article investigated the kinetic studies of thorium adsorption from an aqueous solution with graphene oxide functionalized with aminomethyl phosphonic acid (AMPA) as an adsorbent. First, the AMPA-GO adsorbent was characterized using TEM, XRD, and FTIR methods. Experiments were performed in two batch and continuous modes. In batch mode, adsorption kinetics were studied in different pH (1-4), temperature (298-328 K), initial concentration (50-500 mg L-1), and dosages (0.1-2 g L-1). The results showed that thorium adsorption kinetic follows pseudo-first-order kinetic model and that the adsorption reaction is endothermic. The maximum experimental adsorption capacity of thorium ions was observed 138.84 mg g-1 at a pH of 3, adsorbent dosage of 0.5 g L-1, and a temperature of 328 K. The results showed that AMPA-GO adsorbent can be used seven times with an acceptable change in adsorption capacity. In continuous conditions, the effect of feed flow rate (2-8 mL min-1), initial concentration (50-500 mg L-1), and column bed height (2-8 cm) was investigated. The continuous data was analyzed using the Thomas, Yoon-Nelson, and Bohart-Adams models. The experimental data of the column were well matched with the Thomas, and Yoon-Nelson models. The research results showed that the use of functionalized graphene oxide adsorbents has a great ability to remove thorium from aqueous solutions.

9.
Sci Rep ; 14(1): 14745, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926435

RESUMO

The current study focuses on examining the characteristics of biofuel obtained from the pyrolysis of Madhuca longifolia residues, since the selected forest residue was primarily motivated by its greater volatile matter content. The study used several analytical techniques to describe pyrolysis oil, char, and gas obtained from slow pyrolysis process conducted between 350 and 600 °C in a fixed-bed reactor. Initially, the effect of process temperature on product distribution was assessed to motivate maximum pyrolysis oil yield and found to be 44.2 wt% at pyrolysis temperature of 475 °C, while the yields of char and gas were 22.1 wt% and 33.7 wt%, respectively. In order to determine the suitability of the feedstock, the Madhuca longifolia residues were analyzed by TGA and FT-IR, which revealed that the feedstock could be a feasible option as an energy source. The characterization of pyrolysis oil, char, and gas has been done through various analytical methods like FT-IR, GC-MS, and gas chromatography. The physicochemical characteristics of the pyrolysis oil sample were examined, and the results showed that the oil is a viscous liquid with a lower heating value than conventional diesel. The FT-IR and GC-MS analysis of pyrolysis oil revealed the presence of increased levels of oxygenated chemicals, acids, and phenol derivatives. The findings of the FT-IR analysis of char indicated the existence of aromatic and aliphatic hydrocarbons. The increased carbon content in the char indicated the possibility of using solid fuel. Gas chromatography was used to examine the chemical structure of the pyrolysis gas, and the results showed the existence of combustible elements.


Assuntos
Biocombustíveis , Cromatografia Gasosa-Espectrometria de Massas , Madhuca , Pirólise , Biocombustíveis/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Madhuca/química , Termogravimetria , Temperatura Alta
10.
Environ Res ; 258: 119474, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914253

RESUMO

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.

11.
Mol Ther Methods Clin Dev ; 32(2): 101264, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38827249

RESUMO

Quasi-perfusion culture was employed to intensify lentiviral vector (LV) manufacturing using a continuous stable producer cell line in an 8-day process. Initial studies aimed to identify a scalable seeding density, with 3, 4, and 5 × 104 cells cm-2 providing similar specific productivities of infectious LV. Seeding at 3 × 104 cells cm-2 was selected, and the quasi-perfusion was modulated to minimize inhibitory metabolite accumulation and vector exposure at 37°C. Similar specific productivities of infectious LV and physical LV were achieved at 1, 2, and 3 vessel volumes per day (VVD), with 1 VVD selected to minimize downstream processing volumes. The optimized process was scaled 50-fold to 1,264 cm2 flasks, achieving similar LV titers. However, scaling up beyond this to a 6,320 cm2 multilayer flask reduced titers, possibly from suboptimal gas exchange. Across three independent processes in 25 cm2 to 6,320 cm2 flasks, reproducibility was high with a coefficient of variation of 7.7% ± 2.9% and 11.9% ± 3.0% for infectious and physical LV titers, respectively. The optimized flask process was successfully transferred to the iCELLis Nano (Cytiva) fixed-bed bioreactor, with quasi-perfusion at 1 VVD yielding 1.62 × 108 TU.

12.
J Hazard Mater ; 475: 134919, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880046

RESUMO

A lithium titanate-decorated Ti3C2Tx MXene (LTO-MX) composite was synthesized through etching and alkali processes, and subsequently immobilized using polyacrylonitrile (PAN) polymer via a phase inversion method. In the batch study, the strontium adsorption behavior followed the Redlich-Peterson isotherm and the pseudo-second-order kinetic models. The maximum adsorption capacity for strontium reached 24.05 mg/g. Furthermore, a continuous fixed-bed column study was performed using the LTO-MX PAN beads to remove strontium from aqueous solutions. The dynamic behavior of column adsorption was examined under various operating parameters such as initial strontium concentration, flow rate, and bed height. Dynamic modeling was employed to describe adsorption breakthrough properties based on these experimental data. Both the Thomas and Yoon-Nelson models accurately simulated the breakthrough curves. The proposed mechanisms for strontium adsorption included encapsulation, electrostatic attraction, cation exchange, and surface complexation. These results demonstrate the effectiveness of LTO-MX PAN beads as adsorbents for the continuous removal of strontium from radioactive wastewater.

13.
Sci Total Environ ; 942: 173752, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851334

RESUMO

The sustainability of wastewater treatment plants poses significant challenges for developing countries, necessitating substantial investment for operation and maintenance. Biofilm reactors seeded with specific species of microorganisms were investigated under controlled environmental conditions. However, the performance evaluation of such reactors under natural conditions remains largely underexplored. This study investigated wastewater treatment capabilities of bench-scale fixed bed biofilm reactors, employing various species (Wastewater Microbes, Pseudomonas, Algae, and a co-culture of Algae and Pseudomonas). The reactors (Treatments and Control) were filled with 28 mm nominal-size local aggregates as packing media, operated under different contact times, and subjected to varying concentrations of heavy metals (Zn, Cd). To assess the reactor performances, the Bland-Altman Plot and Chemical Oxygen Demand (COD) removal kinetics were evaluated. The results revealed that the reactor initiated with a co-culture exhibited the optimal COD removal efficiency, reaching 84 ± 1 %. The reactor initially seeded with wastewater microbes exhibited the highest heavy metal elimination, achieving 94 ± 1 % and 88 ± 1 % removal for Zn and Cd respectively. The wastewater-seeded reactor demonstrated the zero-order COD removal kinetic coefficient (k) of 46.41 mg/L/h at an average influent COD concentration of 558 mg/L at 10 h contact time. While Pseudomonas-seeded reactor demonstrated k = 0.73 mg/L/h at 20 h contact time with 69 mg/L influent COD and heavy metal concentrations Zn = 26 mg/L and Cd = 3.57 mg/L. The findings of this study suggest that variations in environmental conditions, contact time, and heavy metal concentration have minimal impact on the pollutant removal efficacy of the reactors, and provide robust evidence for their viability as a sustainable alternative in municipal wastewater treatment. The study also identifies the possibility of treating specific wastewater characteristics by altering the dominant species in the reactors, paving the way for further research on the efficacy of other microbial genomes in fixed bed biofilm reactors.


Assuntos
Biofilmes , Reatores Biológicos , Metais Pesados , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Nepal , Análise da Demanda Biológica de Oxigênio
14.
Polymers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794495

RESUMO

This paper presents the results of investigations into the pyrolysis of waste polypropylene in a laboratory fixed-bed batch reactor. The experiments were designed and verified in such a way as to allow the application of the response surface methodology (RSM) in the development of an empirical mathematical model that quantifies the impacts mentioned above. The influence of the mass of the raw material (50, 100, and 150 g) together with the reactor temperature (450, 475, and 500 °C) and the reaction time (45, 50 and 75 min) was examined. It has been shown that the mass of the raw material, i.e., the filling volume of the reactor, has a significant influence on the pyrolysis oil yield. This influence exceeds the influence of reactor temperature and reaction time. This was explained by observing the temperature change inside the reactor at three different spots at the bottom, middle, and top of the reactor. The recorded temperature diagrams show that, with greater masses of feedstock, local overheating occurs in the middle part of the reactor, which leads to the overcracking of volatile products and, from there, to an increased formation of non-condensable gases, i.e., a reduced yield of pyrolytic oil.

15.
Sci Rep ; 14(1): 9421, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658602

RESUMO

This study aimed to optimize pyrolysis conditions to maximize bio-oil yield from cattle dung, a waste product of livestock practices. Pyrolysis of cattle dung was carried out in batch type reactor. The pyrolysis process was optimized using a central composite design in response surface methodology, with conversion parameters such as pyrolysis temperature, vapor cooling temperature, residence time, and gas flow rate taken into account. The cattle dung bio-oil was analyzed using gas chromatography/mass spectroscopy (GC/MS), an elemental analyzer, a pH probe, and a bomb calorimeter. Furthermore, the ASTM standard procedures were used to determine the bio-fuel characteristics. The optimized conditions were found to be a pyrolysis temperature of 402 °C, a vapor cooling temperature of 2.25 °C, a residence time of 30.72 min, and a gas flow rate of 1.81 l min-1, resulting in a maximum bio-oil yield of 18.9%. According to the findings, the yield of bio-oil was predominantly affected by pyrolysis temperature and vapor cooling temperature. Moreover, the bio-oil that was retrieved was discovered to be similar to conventional liquid fuels in numerous ways.


Assuntos
Biocombustíveis , Pirólise , Animais , Bovinos , Biocombustíveis/análise , Cromatografia Gasosa-Espectrometria de Massas , Esterco/análise , Temperatura , Temperatura Alta , Fezes/química
16.
Sci Rep ; 14(1): 9634, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671081

RESUMO

Experiments of co-gasification of spirit-based distillers' grains (SDG) and sewage sludge (SS) were carried out with red mud (RM) by using a self-designed fixed-bed gasifier. The effects of RM addition, gasification reaction temperature, SS and SDG blending ratio and other factors on the gasification reaction characteristics and synergism were investigated. The results are as follow: RM had catalytic effect on SS and SDG co-gasification, which can enhance the gasification reaction and H2 yield; increasing the temperature can enhance the gasification reaction and reduce the syngas H2/CO; with the increase of SDG, the H2 yield gradually grew; with the rise of SS, the gasification reaction gradually augmented. The catalytic mechanism was mainly due to the redox cycle of Fe2O3 in RM, which can promote the water transfer reaction. At the same time, the eutectic mixture of K, Na, Ca, Fe and other metal elements at high temperatures was the main reason for the synergistic effect.

17.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568307

RESUMO

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Assuntos
Óxido Ferroso-Férrico , Praguicidas , Poluentes Químicos da Água , Catálise , Poluentes Químicos da Água/química , Óxido Ferroso-Férrico/química , Peróxido de Hidrogênio/química , Oxirredução , Azóis/química
18.
Environ Sci Pollut Res Int ; 31(21): 31042-31053, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622419

RESUMO

Groundwater contamination is a global concern that has detrimental effect on public health and the environment. Sustainable groundwater treatment technologies such as adsorption require attaining a high removal efficiency at a minimal cost. This study investigated the adsorption of arsenate from groundwater utilizing chitosan-coated bentonite (CCB) under a fixed-bed column setup. Fuzzy multi-objective optimization was applied to identify the most favorable conditions for process variables, including volumetric flow rate, initial arsenate concentration, and CCB dosage. Empirical models were employed to examine how initial concentration, flow rate, and adsorbent dosage affect adsorption capacity at breakthrough, energy consumption, and total operational cost during optimization. The ε-constraint process was used in identifying the Pareto frontier, effectively illustrating the trade-off between adsorption capacity at breakthrough and the cost of the fixed-bed system. The integration of fuzzy optimization for adsorption capacity and its total operating cost utilized the global solver function in LINGO 20 software. A crucial equation derived from the Box-Behnken design and a cost equation based on energy and material usage in the fixed-bed system was employed. The results from identifying the Pareto front determined boundary limits for adsorption capacity at breakthrough (ranging from 12.96 ± 0.19 to 12.34 ± 0.42 µg/g) and total operating cost (ranging from 955.83 to 1106.32 USD/kg). An overall satisfaction level of 35.46% was achieved in the fuzzy optimization process. This results in a compromise solution of 12.90 µg/g for adsorption capacity at breakthrough and 1052.96 USD/kg for total operating cost. Henceforth, this can allow a suitable strategic decision-making approach for key stakeholders in future applications of the adsorption fixed-bed system.


Assuntos
Arseniatos , Bentonita , Quitosana , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Arseniatos/química , Bentonita/química , Adsorção , Poluentes Químicos da Água/química , Água Subterrânea/química , Purificação da Água/métodos
19.
Environ Sci Pollut Res Int ; 31(19): 28706-28718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558336

RESUMO

Developing adsorbent materials with high adsorptive dephosphorization (ADP) is significant for treating phosphate from aqueous solutions and eutrophic water. Herein, the MIL-101(Cr) framework was entrapped ionic liquid (IL) of 1-butyl-3-methylimidazoliumbromide ionic liquid ([C4mem]+[Br]-) using a ship-in-a-bottle approach to obtain novel adsorbents [C4mem]+[Br]-@MIL-101(Cr) contained varied IL contents, namely C4mem@MIL-101. The characterization results revealed that the formed [C4mem]+[Br]- molecules interacted with the MIL-101(Cr) frameworks, enhanced their stability, and offered additional adsorption sites. The batch adsorptions of phosphate showed that the optimized C4mem@MIL-101 adsorbent loaded with ~ 7% IL-based N content had the highest phosphate absorbing capacity of ~ 200 mg/g, outperforming the pristine MIL-101(Cr) and other adsorbents. The ADP efficiency was facilitated in the acidic media, where the phosphate ions of H2PO4- and HPO42- captured onto the C4mem@MIL-101 via several interactions, including electrostatic attraction, H-bonds, and chemical interactions. In the meantime, the coexisting anions diminished the phosphate adsorption because they competed with the pollutants at adsorption sites. Furthermore, phosphate treatment under the continuous fixed-bed conditions showed that 1 g of the polyvinyl alcohol (PVA)-mixed C4mem@MIL-101 pellets purified 25 l of water containing phosphate with a 1 mg/l concentration. The results suggest that the novel [C4mem]+[Br]-@MIL-101(Cr) structure had a high potential for treating phosphate in aqueous solutions.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Fosfatos , Poluentes Químicos da Água , Purificação da Água , Líquidos Iônicos/química , Fosfatos/química , Adsorção , Estruturas Metalorgânicas/química , Purificação da Água/métodos , Poluentes Químicos da Água/química
20.
Carbohydr Polym ; 335: 122047, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616086

RESUMO

Metal-organic framework (MOF) particles are one of the most promising adsorbents for removing organic contaminants from wastewater. However, powder-type MOF particles face challenges in terms of utilization and recovery. In this study, a novel bead-type adsorbent was prepared using activated carbon based on the zeolitic imidazolate framework-8 (AC-ZIF-8) and a regenerated cellulose hydrogel for dye removal. AC-ZIF-8 particles with a large surface area were obtained by carbonization and chemical activation with KOH. The AC-ZIF-8 powders were efficiently immobilized in hydrophilic cellulose hydrogel beads via cellulose dissolution/regeneration. The prepared AC-ZIF-8/cellulose hydrogel (AC-ZIF-8/CH) composite beads exhibit a large specific surface area of 1412.8 m2/g and an excellent maximum adsorption capacity of 565.13 mg/g for Rhodamine B (RhB). Moreover, the AC-ZIF-8/CH beads were effective over a wide range of pH, temperatures and for different types of dyes. These composite beads also offer economic benefits through desorption of dyes for recycling. The AC-ZIF-8/CH beads can be produced in substantial amounts and used as fillers in a fixed-bed column system, which can purify the continuous inflow of dye solutions. These findings suggest that our simple approach for preparing high-performance adsorbent beads will broaden the application of dye adsorbents, oil-water separation, and catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA