RESUMO
Binding of fluorescent ligand (FL) to the cyan fluorescent protein (CFP)-coupled ligand-binding domain of the inositol 1,4,5-trisphosphate (IP3) receptor (CFP-LBP) produces fluorescence (Förster) resonance energy transfer (FRET). A competitive fluorescent ligand assay (CFLA), using the FRET signal from competition between FLs and IP3, can measure IP3 concentration. The FRET signal should be enhanced by attaching a FRET donor to an appropriate position. Herein, we inserted five different circularly permuted CFPs in the loop between the second and third α-helices to generate membrane-targeted fluorescent ligand-binding proteins (LBPs). Two such proteins, LBP-cpC157 and LBP-cpC173, localized at the plasma membrane, displayed FRET upon binding the high-affinity ligand fluorescent adenophostin A (F-ADA), and exhibited a decreased fluorescence emission ratio (480 nm / 535 nm) by 1.6- to 1.8-fold that of CFP-LBP. In addition, binding of a fluorescent low-affinity ligand (F-LL) also reduced the fluorescence ratio in a concentration-dependent manner, with EC50 values for LBP-cpC157 and LBP-cpC173 of 34.7 nM and 27.6 nM, respectively. These values are comparable to that with CFP-LBP (29.2 nM), indicating that insertion of cpC157 and cpC173 did not disrupt LBP structure and function. The effect of 100 nM F-LL on the decrease in fluorescence ratio was reversed upon addition of IP3, indicating binding competition between F-LL and IP3. We also constructed cytoplasmic fluorescent proteins cyLBP-cpC157 and cyLBP-cpC173, and bound them to DYK beads for imaging analyses. Application of F-ADA decreased the fluorescence ratio of the beads from the periphery to the center over 3 - 5 min. Application of F-LL also decreased the fluorescence ratio of cyLBP-cpC157 and cyLBP-cpC173 by 20-25%, and subsequent addition of IP3 recovered the fluorescence ratio in a concentration-dependent manner. The EC50 value and Hill coefficient obtained by curve fitting against the IP3-dependent recovery of fluorescence ratio can be used to estimate the IP3 concentration.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Inositol , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ligantes , Inositol 1,4,5-Trifosfato/metabolismo , Ligação ProteicaRESUMO
Extracellular membrane vesicles (EMVs) are biogenic secretory lipidic vesicles that play significant roles in intercellular communication related to human diseases and bacterial pathogenesis. They are being investigated for their possible use in diagnosis, vaccines, and biotechnology. However, the existing methods suffer from a number of issues. High-speed centrifugation, a widely used method to collect EMVs, may cause structural artifacts. Immunostaining methods require several steps and thus the separation and detection of EMVs from the secretory cells is time-consuming. Furthermore, detection of EMVs using these methods requires specific and costly antibodies. To tackle these problems, development of a simple and rapid detection method for the EMVs in the cultured medium without separation from the secretory cells is a pressing task. In this study, we focused on the Gram-negative bacterium Shewanella vesiculosa HM13, which produces a large amount of EMVs including a cargo protein with high purity, as a model. Curvature-sensing peptides were used for EMV-detection tools. FAAV, a peptide derived from sorting nexin protein 1, selectively binds to the EMVs even in the presence of the secretory cells in the complex cultured medium. FAAV can fully detect the EMVs within a few minutes, and the resistance of FAAV to proteases enables it to withstand prolonged use in the cultured medium. Fluorescence/Förster resonance energy transfer was used to develop a method to detect changes in the amount of the EMVs with high sensitivity. Overall, our results indicate the potential applicability of FAAV for in situ EMV detection in cultured media.
Assuntos
Meios de Cultura/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Shewanella/química , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Humanos , Ultracentrifugação/instrumentação , Ultracentrifugação/métodosRESUMO
Complexin (Cpx) is thought to be a major regulator of soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE)-dependent membrane fusion. Although the inhibition of membrane fusion by Cpx has been frequently reported, its structural basis has been elusive and an anticipated disruption of the SNARE core has never been observed. In the present study, to mimic the natural environment, we assembled a single SNAREpin between two nanodisc membrane patches. Single-molecule FRET (smFRET) detects a large conformational change, specifically at the C-terminal half, whereas no conformational change is observed at the N-terminal half. Our results suggest that Cpx splits the C-terminal half of the SNARE core at least 10 Å (1 Å=0.1 nm), whereby inhibiting further progression of SNARE zippering and membrane fusion.