RESUMO
Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to â¼ 35 dB (SNR), â¼ 8.65 a . u . (contrast), and â¼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.
Assuntos
Benchmarking , Imagem Molecular , Imagem Óptica , Imagens de Fantasmas , Razão Sinal-Ruído , Imagem Molecular/métodos , Imagem Molecular/normas , Imagem Óptica/métodos , Imagem Óptica/normas , Processamento de Imagem Assistida por Computador/métodosRESUMO
Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.
Assuntos
Monitoramento Ambiental , Lagos , Lagos/química , China , Monitoramento Ambiental/métodos , Eutrofização , Substâncias Húmicas/análise , Qualidade da Água , Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , EcossistemaRESUMO
4-n-butylresorcinol (4nBR) is a frequently utilized as whitening ingredients in skincare cosmetics. Compared with other whitening ingredients, it can effectively inhibit tyrosinase with lower toxicity and superior inhibition efficacy. Under alkaline conditions, an induced oxidative coupling reaction can occur between 4nBR and dopamine (DA) to generate strong fluorescent substance azamonardine with an intense emission band centering at 476 nm when excited at 440 nm. This phenomenon can be used to establish a fluorescence analysis method for 4nBR. The results indicated that the linear range of the method was 1.0-24.0 nmol L-1, and the detection limit was as low as 0.25 nmol L-1. The method showed high sensitivity, good selectivity, mild experimental conditions and low cost. The proposed method was successfully used to detect 4nBR in cosmetics, and the results were consistent with those of HPLC. The spiking recoveries were between 98.2% and 108 %.
Assuntos
Dopamina , Resorcinóis , Espectrometria de Fluorescência , Resorcinóis/química , Resorcinóis/análise , Dopamina/análise , Dopamina/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Cosméticos/química , Cosméticos/análise , FluorescênciaRESUMO
BACKGROUND: Analyte-triggered semiconductor quantum dots (QDs) modulation in the presence of non-consistently responsive fluorescent species represents a challenging analytical issue in concrete multi-way data handling. QDs with heterogeneous sizes and/or uneven distribution of functional moieties on their surfaces exhibit significant fluctuations in the fluorescent response components, known as chemical rank, across different excitation/emission modes. This phenomenon may lead to a substantial deviation from the proportionality prescribed by Beer-Lambert law. Nonetheless, even in the presence of such deviation, a multi-way model may be successfully selected after determining a proper chemical rank in a QDs system. RESULTS: We show that in a valid PARAllel FACtor (PARAFAC) model under properly determined chemical rank, meaningfully resolved pure spectral profiles can be reached for each fluorescent responsive constituent in the original excitation-emission fluorescence matrix (EEFM) measurements. This was thoroughly illustrated by applying PARAFAC trilinear decomposition of a three-way data array of two distinct datasets acquired from semiconductor QDs sensing systems with low-rank trilinear assumption. The first dataset, presented here for the first time, comprises EEFM measurements of the ligand-driven quenching of thiomalic acid (TMA)-capped AgInS2 (AIS) QDs by vomitoxin. The second dataset, employed for illustrative purposes, comprises EEFM measurements of the quenching, via cation bridging, of glutathione (GSH)-capped CdTe QDs by Pb(II). The results of this study enabled the determination of vomitoxin at a ppb level in real samples of fish feeds, showcasing the efficacy of the PARAFAC model in resolving spectral signatures (loadings) and pure concentration profiles (scores). SIGNIFICANCE: PARAFAC under a properly examined chemical rank can be easily adapted for retrieval the underlying Beer-Lambert law of the original EEFM measurements with a low-rank trilinear structure through the chemically meaningful information either when (i) no deviation of Beer-Lambert law was observed as deeply discussed in connection with the dataset acquired from vomitoxin-driven molecular sensing through TMA-capped AIS QDs, or when (ii) substantial deviations of the Beer-Lambert law are evident, as discussed in connection with the dataset collected from sensing ionic species through Pb(II) bridging of GSH-capped CdTe QDs.
RESUMO
In this work, we combined plasmon-enhanced fluorescence and electrochemical (PEF-EC) transduction mechanisms to realize a highly sensitive dual-transducer aptasensor. To implement two traducers in one biosensor, a novel large-scale nanoimprint lithography process was introduced to fabricate gold nanopit arrays (AuNpA) with unique fringe structures. Light transmitting through the AuNpA samples exhibited a surface plasmon polariton peak overlapping with the excitation peak of the C7 aptamer-associated fluorophore methylene blue (MB). We observed a five and seven-times higher average fluorescence intensity over the AuNpA and fringe structure, respectively, in comparison to a plane Au film. Furthermore, the MB fluorophore was simultaneously utilized as a redox probe for electrochemical investigations and is described here as a dual transduction label for the first time. The novel dual transducer system was deployed for the detection of SARS-CoV-2 Spike protein via a C7 aptamer in combination with a strand displacement protocol. The PEF transducer exhibited a detection range from 1 fg/mL to 10 ng/mL with a detection limit of 0.07 fg/mL, while the EC traducer showed an extended dynamic range from 1 fg/mL to 100 ng/mL with a detection limit of 0.15 fg/mL. This work provides insights into an easy-to-perform, large-scale fabrication process for nanostructures enabling plasmon-enhanced fluorescence, and the development of an advanced but universal aptasensor platform.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aptâmeros de Nucleotídeos/química , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/métodos , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Ressonância de Plasmônio de Superfície/métodos , Nanopartículas Metálicas/química , Fluorescência , Azul de Metileno/químicaRESUMO
Amyloid-ß (Aß) species (Aß fibrils and Aß plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aß probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aß probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aß. Notably, the probes containing CN group display the ability of binding two distinct sites of Aß, which dramatically enhanced the affinity to Aß species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aß species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aß probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aß probes with low background in vivo/in vitro imaging for Aß species.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Corantes Fluorescentes , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Camundongos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Raios Infravermelhos , Camundongos Transgênicos , HumanosRESUMO
The utilization of diagnostic-integrated molecules can enable targeted delivery and controlled release to significantly enhance therapeutic effectiveness and minimize toxic effects. Herein, we developed a novel class of glutathione (GSH)-activated bifunctional molecules that respond to elevated levels of GSH in tumor microenvironment. These bifunctional molecules retained the pharmacodynamic effects of parent molecules and mitigated cytotoxicity. Meanwhile, controlled release was monitored using fluorescent signals, enabling detection of drug distribution and accumulation in situ and in real time. Moreover, the correlation between GSH levels and fluorescence intensity offers the possibility of monitoring the effectiveness of responsive drugs. In conclusion, bifunctional molecules, as novel diagnostic-integrated molecules with both fluorescence imaging and therapeutic effects, exhibited potential applications in cancer therapy and imaging.
Assuntos
Glutationa , Imagem Óptica , Glutationa/metabolismo , Glutationa/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Animais , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , CamundongosRESUMO
The daily consumption of foods abundant in Glutathione (GSH) can be supplemented to maintain the homeostasis of GSH in human health and alleviate pathologies resulting from abnormal GSH levels. The fluorescence-based visual determination of GSH has gradually attracted the attention of researchers due to its robust performance and versatile implementation. However, the current GSH visual strategy primarily relies on variations in fluorescence intensity at a single emission wavelength, which poses challenges for naked-eye and portable readout, as well as distorted signals caused by complex matrix effects in real samples. Herein, a ratiometric fluorescence sensor based on carbon dots (CDs) combined with an all-in-one 3D-printed smartphone-based device was successfully developed for low-cost, visual and rapid detection of GSH without the need for an external excitation light source. The ratiometric fluorescent materials were synthesized by conjugating blue carbon dots (B-CDs) with yellow carbon dots (Y-CDs) through the utilization of selected Cu2+ ions. The resulting mechanism demonstrated that the coordination interaction between Cu2+ and residual aromatic amino groups in Y-CDs (Y-CDs-Cu2+) contributed to a newly emitted peak at 580 nm, thereby inducing fluorescence resonance energy transfer from B-CDs to Y-CDs-Cu2+. A linear correlation was found between GSH concentrations and R/B values in the range of 10-100 µM, with a limit of detection observed at 4.8 µM. By utilizing this portable device in combination with RGB analysis, the quantitative detection of GSH can be achieved even in complex food matrices such as tomatoes and grapes. The universality of this all-in-one device was further validated by pre-spraying CDs onto a paper strip for visual measurement of GSH. This work offers a portable, visual, and accessible approach to evaluating food safety and nutrition, thereby demonstrating significant economic value and holding profound implications for human health.
Assuntos
Carbono , Corantes Fluorescentes , Glutationa , Pontos Quânticos , Smartphone , Glutationa/análise , Glutationa/química , Pontos Quânticos/química , Carbono/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Cobre/química , HumanosRESUMO
MicroRNAs (miRNAs) are currently recognized as important biomarkers for the early diagnosis and prognostic treatment of cancer. Herein, we developed a simple and label-free method for the multiplex detection of miRNAs, based on entropy-driven circuit (EDC) amplification and non-gel sieving capillary electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform. In this system, three different lengths of fuel chains were designed to catalyze three EDC, targeting miRNA-21, miRNA-155, and miRNA-10b, respectively. In the presence of target miRNA, the EDC cycle amplification reaction was triggered, generating numerous stable double-strands products (F-DNA/L-DNA). Since the three miRNAs correspond to three different lengths of F-DNA/L-DNA, they can be easily isolated and detected by NGCE. This strategy has good sensitivity, with detection limits of 68 amol, 292.2 amol, and 394 amol for miRNA-21, miRNA-155, and miRNA-10b, respectively. Additionally, this method has good specificity and can effectively distinguish single-base mismatches of miRNA. The recoveries of the three miRNAs in deproteinized healthy human serum ranged from 91.28 % to 108.4 %, with a relative standard deviation (RSD) of less than 7.9 %. This method was further applied to detect cellular miRNAs in human breast cancer (MCF-7) cell extracts, revealing an up-regulation of miRNA-21, miRNA-155, and miRNA-10b in MCF-7 cells. The successful spiked recovery in human serum and RNA extraction from MCF-7 cells underscores the practicality of this method. Therefore, this strategy has broad application prospects in biomedical research.
Assuntos
Eletroforese Capilar , Entropia , MicroRNAs , MicroRNAs/sangue , MicroRNAs/análise , MicroRNAs/genética , Humanos , Eletroforese Capilar/métodos , Limite de Detecção , DNA/química , DNA/genéticaRESUMO
MicroRNAs (miRNAs) play important roles in the growth process of plants, and some food-originated plant miRNAs have potential impacts on human health, which makes the detection of plant miRNAs of great significance. However, plant miRNAs are naturally modified with 2'-O-methyl at the 3'-terminal, which is difficult to be directly quantified by enzyme-catalyzed terminal polymerization protocols. Herein, we have proposed a simple strategy by coupling DNA self-assembly-boosted transcription amplification with CRISPR/Cas13a platform (termed as Cas13a-SATA) for the specific and sensitive detection of plant miRNA. In the Cas13a-SATA, the plant miRNA will mediate DNA self-assembly on the surface of microbeads and then trigger efficient transcription amplification to yield numerous single-stranded RNA (ssRNA) molecules, which can effectively activate the Cas13a trans-cleavage activity to generate intense fluorescence signal in a plant miRNA dosage-responsive manner. Using the Cas13a-SATA, we have realized the sensitive detection of plant miR156a with the limit of detection (LOD) down to 3.8 fM. Furthermore, Cas13a-SATA has been successfully applied to the accurate quantification of miR156a in Arabidopsis and maize, demonstrating its feasibility in analyzing plant miRNAs in real biological samples.
Assuntos
Sistemas CRISPR-Cas , MicroRNAs , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA de Plantas/genética , DNA/química , DNA/genética , Transcrição Gênica , Limite de Detecção , Arabidopsis/genéticaRESUMO
Alkaline phosphatase (ALP) is abnormally expressed in some cancers and promotes the growth, metastasis, and invasion of cancer cells. The detection of ALP is of great significance for both pathological study and clinical detection. In this work, a europium (Eu)-based fluorescence detection sensor was prepared in a mild reaction condition. LaF3:Eu nanoparticles was mixed with ethylene imine polymer (PEI) and Ag+ ions. PEI was used as stabilizer and reducing agent, and Ag+ ions were reduced as molecular-like silver clusters (ML-Ag NCs). The fluorescence of LaF3:Eu nanoparticles was enhanced by ML-Ag NCs through energy transfer. When ascorbic acid 2-phosphate (AAP) was hydrolyzed to ascorbic acid (AA) in the presence of ALP, AA reduced Ag+ ions to silver nanoparticles (Ag NPs) and quenched the fluorescence of LaF3:Eu/PEI/Ag. The activity of ALP was detected by measuring the fluorescence intensity of Eu3+ at 618 nm. In the concentration range from 2.0 to 16.0 U/L, the fluorescence intensity ratio ((F0-F)/F0) had a linear relationship with the logarithm of ALP concentration. The limit of detection (LOD) was 1.3 U/L. Moreover, the ALP activity was detected successfully in cancer cells by this method. The sensing platform has application potential in the detection of ALP activity in biological systems.
Assuntos
Fosfatase Alcalina , Európio , Nanopartículas Metálicas , Prata , Prata/química , Európio/química , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Humanos , Nanopartículas Metálicas/química , Fluorescência , Espectrometria de Fluorescência/métodos , Limite de Detecção , Lantânio/química , Fluoretos/química , Polietilenoimina/química , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/químicaRESUMO
Alterations in intracellular calcium are integral to signal transduction pathways for many G-protein-coupled receptors, but this signaling is not well studied. This is mostly due to a lack of reliable, robust, high-throughput, quantitative methods to monitor intracellular calcium concentrations in live cells. Recently, we developed a reliable, robust, quantitative method to measure intracellular calcium levels in which HEK293 cell suspensions loaded with Fura-2/AM are placed in 96-well plates. Minimum and maximum intracellular calcium levels, which are required for converting fluorescence into calcium concentrations, are calibrated using EGTA to chelate calcium and ionomycin to load calcium into cells, respectively. Fluorescence is monitored with a PHERAstar FS plate reader. We provide a detailed method for this high-throughput assay that can be used to quantitate intracellular calcium in endogenous and exogenously (stable or transient) expressed GPCRs in HEK293 cells.
Assuntos
Sinalização do Cálcio , Cálcio , Ensaios de Triagem em Larga Escala , Receptores Acoplados a Proteínas G , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Cálcio/metabolismo , Fura-2/metabolismoRESUMO
Significance: ALA-PpIX and second-window indocyanine green (ICG) have been studied widely for guiding the resection of high-grade gliomas. These agents have different mechanisms of action and uptake characteristics, which can affect their performance as surgical guidance agents. Elucidating these differences in animal models that approach the size and anatomy of the human brain would help guide the use of these agents. Herein, we report on the use of a new pig glioma model and fluorescence cryotomography to evaluate the 3D distributions of both agents throughout the whole brain. Aim: We aim to assess and compare the 3D spatial distributions of ALA-PpIX and second-window ICG in a glioma-bearing pig brain using fluorescence cryotomography. Approach: A glioma was induced in the brain of a transgenic Oncopig via adeno-associated virus delivery of Cre-recombinase plasmids. After tumor induction, the pro-drug 5-ALA and ICG were administered to the animal 3 and 24 h prior to brain harvest, respectively. The harvested brain was imaged using fluorescence cryotomography. The fluorescence distributions of both agents were evaluated in 3D in the whole brain using various spatial distribution and contrast performance metrics. Results: Significant differences in the spatial distributions of both agents were observed. Indocyanine green accumulated within the tumor core, whereas ALA-PpIX appeared more toward the tumor periphery. Both ALA-PpIX and second-window ICG provided elevated tumor-to-background contrast (13 and 23, respectively). Conclusions: This study is the first to demonstrate the use of a new glioma model and large-specimen fluorescence cryotomography to evaluate and compare imaging agent distribution at high resolution in 3D.
Assuntos
Neoplasias Encefálicas , Glioma , Imageamento Tridimensional , Verde de Indocianina , Animais , Verde de Indocianina/farmacocinética , Verde de Indocianina/química , Suínos , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento Tridimensional/métodos , Ácido Aminolevulínico/farmacocinética , Encéfalo/diagnóstico por imagem , Imagem Óptica/métodos , Modelos Animais de DoençasRESUMO
Based on the growing range of applications for polycations in research and commercial materials, a continuing need exists to advance the fundamental knowledge and understanding of this class of materials. Spectroscopic and solution properties characterizations of noncovalently labeled, fluorescent Alexa Fluor® dye complexes of two commercial polycations, poly(2-(trimethylamino) ethyl methacrylate) monocation and poly[bis[2-chloroethyl] ether-alt-1,3-bis[3-(dimethylamino) propyl] urea] dication are reported to help address this need. A variety of fluorescence spectroscopic methods are used with a special emphasis on fluorescence correlation spectroscopy (FCS) which is applied to characterize the Stokes radius (RS) and equilibrium dissociation constants (Kd) of dye-polycation complexes at nanomolar dye concentrations. Resulting RS values indicate dye binding to individual polycation chains. Measured Kd values in the sub-micromolar range are consistent with strong dye binding. Increasing solution ionic strength with sodium chloride addition inhibits dye binding and decreases the RS of dye-polycation complexes due to size collapse of polycation chains. The complexes differ in their solution stability to ionic strength changes suggesting that both electrostatic and hydrophobic binding interactions influence dye binding. This study establishes the viability of noncovalent dye-polycation complexation in concert with FCS characterization as a general approach for investigating the properties of quaternary ammonium ion containing polycations in aqueous solution.
RESUMO
A novel fluorescent probe NIPF was synthesized by the Suzuki reaction to recognize Cu2+ and CN-. With the addition of Cu2+, NIPF exhibited strong fluorescence quenching (90 % for NIPF) with a Ksv value of 3.4 × 106 M-1 and a detection limit of 9.04 × 10-10 M. Subsequently, CN- was added to the NIPF-Cu2+ solution, and [Cu(CN)x]n- was formed due to the strong interaction between Cu2+ and CN- leading to fluorescence recovery (89 % for NIPF-Cu2+). In addition, a detection limit of 3.6 × 10-8 M was obtained by fluorescence titration. Meanwhile, it was demonstrated that the sensor achieved 93 %-105 % recovery of Cu2+ in the tested environmental samples, and the practicability of Cu2+ and CN- detection were verified using hydrogels test, with significant color changes observed under 365 nm light. Accordingly, the fluorescent probe NIPF was used to recognize Cu2+ and CN- by the "on-off-on" sensors.
RESUMO
Two coordination polymers (CPs), [Zn5(L)2(phen)5](1) and [Cd2(HL)(2,2-bpy)(H2O)3](2), were synthesized by using 2',3,3',5,5'-Diphenyl ether pentacarboxylic acid (H5L), phenanthroline (phen), and 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions. The L5- ligand adopts the µ6-к2: к2: к1: к1: к1: к1 mode in 1 and the µ5-к2: к2: к2: к2: к1 mode in 2. Sensing experiments show that 1 and 2 are fluorescence probes with high sensitivity and rapid detection of nitro explosives, antibiotics, and pesticides. In order to verify the ability of 2 to detect FLU in actual samples, we performed a spiked recovery experiment in green pepper water. The spiked recoveries were 97.77-101.18 %. Interestingly, because H5L is not completely deprotonated in 2, there is abundant hydrogen bonding, which makes the fluorescence quenching rate higher and the detection limit lower. The possible fluorescence quenching mechanism of 1 and 2 can be explained by their UV-VIS absorption spectra and orbital energy levels.
RESUMO
Low fluorescence under visible light excitation and catalytic activity limit many applications of graphene quantum dots in optical detection, biosensing, catalysis and biomedical. The paper reports design and synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot (Fe/B-GQD-HSF). The Fe/B-GQD-HSF shows excellent fluorescence behavior and peroxidase-like activity. Excitation of 330 nm ultraviolet light produces the strongest blue fluorescence and excitation of 480 nm visible light produces the strongest yellow fluorescence. The specific activity reaches 92.67 U g-1, which is higher than that of other graphene quantum dots. The Fe/B-GQD-HSF can catalyze oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to form blue compound. Based on this, it was used for colorimetric and fluorescence detection of H2O2. The absorbance at 652 nm linearly increases with the increase of H2O2 concentration between 0.5 and 100 µM with detection limit of 0.43 µM. The fluorescence signal linearly decreases with the increase of H2O2 concentration between 0.05 and 100 µM with detection limit of 0.035 µM. The analytical method has been satisfactorily applied in detection of H2O2 in food. The study also paves one way for design and synthesis of functional graphene quantum dots with ideal fluorescence behavior and catalytic activity.
Assuntos
Boro , Colorimetria , Ácido Fólico , Grafite , Histidina , Peróxido de Hidrogênio , Ferro , Pontos Quânticos , Serina , Pontos Quânticos/química , Grafite/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Colorimetria/métodos , Ácido Fólico/análise , Ácido Fólico/química , Ferro/análise , Ferro/química , Boro/química , Histidina/análise , Histidina/química , Serina/análise , Serina/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Análise de Alimentos/métodos , Peroxidase/química , Peroxidase/metabolismo , CatáliseRESUMO
Lead (Pb) is a heavy metal known for its adverse effects on both human health and the environment. In recent years, the industrial utilization of Pb2+ has surged, underscoring the imperative need for efficient measurement methods. In this study, a rapid and simple photochemical method was used to synthesize thioglycolic acid (TGA)-stabilized CdTe/ZnSe core-shell quantum dots (QDs). These CdTe/ZnSe QDs emit vibrant green fluorescence and exhibit remarkable quenching in the presence of Pb2+ ions. This property enables the development of an on-site on/off sensor without the necessity of additional modifications. The proposed sensor possesses an outstanding sensitivity to Pb2+, with a detection limit and linear range of 31.8 nM and 50 nM-10 µM, respectively. Importantly, the selectivity of this fluorescence-based sensor was validated by analyzing various positively and negatively charged ions. Furthermore, the developed sensor showed reliable performance against real river, agricultural, and tap water, as confirmed by Inductively Coupled Plasma (ICP) analysis. Additionally, CdTe/ZnSe QDs immobilized on glass slides were successfully employed for on-site water sample analysis, providing a versatile solution for environmental monitoring.
RESUMO
The use of a conjugate N-containing ligand resulted in the decreasing of structural dimensions from 2D network of [Tb(2-pyia)(Ac)(H2O)] (CP1) to 1D chain [Tb(2-pyia)(Ac)(IDP)] (CP2) (2-H2pyia = 5-(pyridin-2-ylmethoxy) isophthalic acid and IDP=imidazo[4,5-f]-[1,10] phenanthroline). Both of them exhibit the characteristic luminescence of Tb ions and could have high fluorescence sensing properties for cefixime and fluridine. The different sensing properties for nitro explosives are manifested as CP1 for nitrobenzene and CP2 for 4-nitrophenol due to the difference in structure. Furthermore, CP2 exhibits the ratiometric fluorescence sensing for Fe3+ ion with a low detection limit of 0.405 µM. The fluorescence sensing mechanism of the two Tb complexes for different analytes was investigated using experimental methods and theoretical calculations. CP1 was used for the detection of Flu residues in the actual system and better results were obtained. The work shows the introduction of the chelated ligand might affect the structural and sensing performance changes of coordination polymers.
RESUMO
AFB1 is a harmful substance that can be found in agricultural products and can seriously affect human health, even in trace amounts. Therefore, monitoring AFB1 levels to ensure food safety and protect public health is crucial. New, highly reliable, selective, and rapid detection methods are needed to achieve this goal. Our work involves the development of a polymeric membrane sensor using radical polymerization that can accurately detect AFB1. Various spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM)) were used to obtain information about the structural and morphological properties of the prepared sensor. The sensor displayed fluorescence selectively responsive to AFB1 at the excitation wavelength of 376 nm and emission wavelength of 423 nm. The polymeric fluorescence sensor showed good sensitivity and a wide linear range from 9.61 × 10-10 and 9.61 × 10-9 mol/L for AFB1quantification. The limit of detection (LOD) is as low as 3.84 × 10-10 mol/L for AFB1. Other mycotoxins, such as aflatoxin B2 and aflatoxin G1, did not interfere with the sensor's high selectivity towards AFB1. To test the sensor's effectiveness in detecting AFB1 in real samples, three different grain samples - peanuts, hazelnut butter, and peanuts with a sauce known to contain AFB1 - were utilized. The results were satisfactory and demonstrated that the sensor can be successfully employed in real samples, with an error range of 0.43 % to 12.10 %.