Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Plant Physiol ; 302: 154315, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39053091

RESUMO

The significance of hydrogen sulfide (H2S) as a crucial gasotransmitter has been shown extensively in plants, and endogenous H2S is often modulated to activate H2S signaling when plants respond to numerous developmental and environmental cues. Consequently, elucidating the H2S physiological concentrations and the H2S generation intensity of plants is key to understanding the activation mechanism of H2S signaling, which has attracted increasing attention. Currently, a variety of reaction-based methods have been reported for monitoring H2S concentration in vivo and in vitro. In this review, we summarize and describe in detail several methods for quantifying and bioimaging endogenous H2S in plants systems, mainly the spectrophotometer-dependent methylene blue (MB) method and fluorescence probes, including the reaction mechanisms, design strategies, response principles, and application details. Moreover, we also summarize the advantages and disadvantages of these methods as well as the research scenarios in which they are applicable. We expect that this review will provide some guidelines on the selection of methods for H2S sensing and the comprehensive investigations into H2S signaling in plants.


Assuntos
Sulfeto de Hidrogênio , Plantas , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/análise , Plantas/metabolismo , Azul de Metileno/metabolismo , Transdução de Sinais , Corantes Fluorescentes/química
2.
Biosensors (Basel) ; 14(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39056590

RESUMO

Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development.


Assuntos
Corantes Fluorescentes , Nanopartículas , Pontos Quânticos , Corantes Fluorescentes/química , Microscopia de Fluorescência , Humanos
3.
Biosci Biotechnol Biochem ; 88(8): 892-899, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38830810

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected many people around the world; fast and accurate detection of the virus can help control the spread of the virus. Reverse transcription-polymerase chain reaction (RT-PCR) is the gold standard method for SARS-CoV-2 detection. In this study, we improved the RT-PCR by proposing a novel method using dual double-quenched fluorescence probes. We used the improved probes to detect the plasmid DNA and RNA reference materials of SARS-CoV-2, respectively. The results show that, the background fluorescence intensity reduced by 50%, the fluorescence increment increased to 2.8 folds, and the Ct value significantly reduced by 3 or more, indicating that the detection sensitivity increased at least 8 times. In addition, we demonstrated that the improved probes have well performance in detecting SARS-CoV-2, with the minimum concentration of 6.2 copies/µL. This study will help biological companies develop better products for SARS-CoV-2 and other clinical pathogen infection.


Assuntos
COVID-19 , Corantes Fluorescentes , RNA Viral , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Corantes Fluorescentes/química , Humanos , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral/análise , RNA Viral/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teste de Ácido Nucleico para COVID-19/métodos , Limite de Detecção
4.
Luminescence ; 39(5): e4769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720528

RESUMO

Fluorene nucleus derivatives show great potential for building outstanding fluorescence probes. In this paper, a novel fluorescent probe was developed by reacting with fluorene core with azacyclobutane, which exhibits typical solvation chromogenic effect in solvent. The fluorescence of the probe quenched in highly polar solvent. Based on this phenomenon, a novel fluorescence system for trace water was constructed. The response of this probe was fast (30 s) and sensitive for the detection of trace water in organic solvents, and the detection limit of water content in DMSO reached 0.13%. In addition, the probe can also be made as a test strip combined with homemade portable device and a smartphone for rapid detection of trace water. The luminescence mechanism of the probe is theoretically calculated based on time-contained density functional theory (TDDFT). To showcase its practicality, it has been applied for the detection of trace water in honey and alcohol by dipstick. This method provides a new idea for designing efficient fluorescent probes based on dipstick and mobile phone rapid detection.


Assuntos
Fluorenos , Corantes Fluorescentes , Espectrometria de Fluorescência , Água , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fluorenos/química , Água/química , Estrutura Molecular , Limite de Detecção , Teoria da Densidade Funcional , Fluorescência , Poluentes Químicos da Água/análise
5.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542833

RESUMO

A group of functionalized fluorene derivatives that are structurally similar to the cellular prion protein ligand N,N'-(methylenedi-4,1-phenylene)bis [2-(1-pyrrolidinyl)acetamide] (GN8) have been synthesized. These compounds show remarkable native fluorescence due to the fluorene ring. The substituents introduced at positions 2 and 7 of the fluorene moiety are sufficiently flexible to accommodate the beta-conformational folding that develops in amyloidogenic proteins. Changes in the native fluorescence of these fluorene derivatives provide evidence of transformations in the amyloidogenic aggregation processes of insulin. The increase observed in the fluorescence intensity of the sensors in the presence of native insulin or amyloid aggregates suggest their potential use as fluorescence probes for detecting abnormal conformations; therefore, the compounds can be proposed for use as "turn-on" fluorescence sensors. Protein-sensor dissociation constants are in the 5-10 µM range and an intermolecular charge transfer process between the protein and the sensors can be successfully exploited for the sensitive detection of abnormal insulin conformations. The values obtained for the Stern-Volmer quenching constant for compound 4 as a consequence of the sensor-protein interaction are comparable to those obtained for the reference compound GN8. Fluorene derivatives showed good performance in scavenging reactive oxygen species (ROS), and they show antioxidant capacity according to the FRAP and DPPH assays.


Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas , Fluorometria , Fluorenos/química
6.
Anal Chim Acta ; 1294: 342309, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336411

RESUMO

BACKGROUND: Glycopeptide antibiotics (GPAs) represented by vancomycin (VAN) are clinically used as a first-line treatment for serious infections caused by Gram-positive pathogens. The use and dosing methods of GPAs are rigorously managed for safety considerations, which calls for fast and accurate quantification approaches. RESULT: A new sort of fluorescent probes for GPAs has been proposed, each of which was integrated by a fluorescein-based reporter and a GPAs' recognition peptide D-alanyl-D-alanine (D-Ala-D-Ala). These probes work as dynamic molecular switches, which mainly exist as non-fluorescent spirolactam forms in the absence of GPAs. GPAs binding with the dipeptide regulates the dynamic balance between fluorescence OFF lactam form and fluorescence ON ring-opened form, rendering these probes capable of GPAs detecting. The most promising one P1 exhibits excellent sensitivity and selectivity towards GPAs detection. SIGNIFICANCE: Different to previous developments, P1 consists of a single fluorophore without the need of a fluorescence-quenching group or a secondary dye, which is the smallest fluorescent probe for GPAs up to now. P1 realizes direct VAN quantification from complex biological samples including real serums, dispensing with additional drug extraction. More interestingly, both P1 and P6 can distinguish GPAs with different peptide backbones, which has not been achieved previously.


Assuntos
Antibacterianos , Glicopeptídeos , Fluorescência , Antibacterianos/química , Glicopeptídeos/química , Vancomicina/química , Alanina
7.
Anal Chim Acta ; 1288: 342173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220304

RESUMO

BACKGROUND: Hydrazine (N2H4) is a highly toxic and versatile chemical raw material, which poses a serious threat to the environment and human health when used in large quantities. However, the traditional methods for the detection of N2H4 have the disadvantages of time-consuming, complicated operation and expensive instruments. In contrast, fluorescence probes have many advantages, such as simple operation, high sensitivity, good selectivity, and fast response time. Therefore, there is an urgent need for a fluorescence probe that can rapidly and accurately detect the presence of N2H4 and monitor the changes in its concentration. RESULTS: For this purpose, we designed and synthesized a series of myricetin fluorescence probes 3-(substituent group)-5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxy. phenyl)-4H-chromen-4-one (Myr-R) for N2H4 detection. In the presence of N2H4, the probe 5,7-dimethoxy-3-(2,3,4,5,6-pentafluorobenzoate)-2-(3,4,5-trimethoxyphen-yl). -4H-chr-omen-4-one (Myr-3) shows significant fluorescence changes, double emission properties and a large Stokes shift (183 nm), and exhibits high selectivity and sensitivity to N2H4 (The detection limit is 93 nM). Importantly, the qualitative and quantitative analysis of N2H4 in water, soil, and air can be accomplished using fluorescence, smartphone, and UV lamps coupled with Myr-3. In addition, Myr-3 can be used for monitoring and imaging intracellular N2H4. Meanwhile, the fluorophore 3-hydroxy-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-benzopyran-4-one (Myr-Me) was applied to fingerprinting of different substrate materials due to the fact that it exhibits strong yellow fluorescence emission in the solid state and shows excellent contrast and high resolution. SIGNIFICANCE: The probe Myr-3 is not only able to rapidly detect N2H4 in complex environments, but also can be used for imaging intracellular N2H4. In addition, the fluorophore Myr-Me can be used as an effective imaging agent for visual fingerprinting. These properties enable the probe Myr-3 and the fluorophore Myr-Me for a wide range of potential applications in related fields.


Assuntos
Flavonoides , Água , Humanos , Células HeLa , Água/química , Hidrazinas/análise , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos
8.
J Fluoresc ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227141

RESUMO

Emissive features of flavins (Riboflavin/RF, Flavin MonoNucleotide/FMN and Flavin Adenine Dinucleotide/FAD) labeled native Deoxyribonucleic Acid (DNA) on Polyvinylpyrrolidone (PVP)-coated silver nanoparticles (SNPs), have been studied. The dual emission of flavins in DNA-PVP-coated SNPs systems is strongly influenced by the reaction time and temperature. Changes in the RF emissive features occur as a side effect when DNA is covalently linked hence, the RF destruction depends on DNA damage. Even if in an oxidation process, the FAD-DNA - PVP-coated SNPs system acts as a weak scavenger of reactive oxygen species, its antioxidant activity is approx. five times higher than that of RF-DNA-PVP-coated SNPs system. Destruction of RF by a riboflavin-mediated DNA photo-oxidation process that occurs on PVP-coated SNPs is suggested. Results have relevance in the redox process of riboflavin and provide valuable information for the further development of novel flavin-based SNPs systems as fluorescent antioxidant markers to solve several biological barriers in humans, such as protein-DNA interaction, cell binding.

9.
Angew Chem Int Ed Engl ; 63(10): e202315536, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38253802

RESUMO

DNAzyme-based fluorescent probes for imaging metal ions in living cells have received much attention recently. However, employing in situ metal ions imaging within subcellular organelles, such as nucleus, remains a significant challenge. We developed a three-stranded DNAzyme probe (TSDP) that contained a 20-base-pair (20-bp) recognition site of a CRISPR/Cas9, which blocks the DNAzyme activity. When Cas9, with its specialized nuclear localization function, forms an active complex with sgRNA within the cell nucleus, it cleaves the TSDP at the recognition site, resulting in the in situ formation of catalytic DNAzyme structure. With this design, the CRISPR/Cas9-inducible imaging of nuclear Zn2+ is demonstrated in living cells. Moreover, the superiority of CRISPR-DNAzyme for spatiotemporal control imaging was demonstrated by integrating it with photoactivation strategy and Boolean logic gate for dynamic monitoring nuclear Zn2+ in both HeLa cells and mice. Collectively, this conceptual design expands the DNAzyme toolbox for visualizing nuclear metal ions and thus provides new analytical methods for nuclear metal-associated biology.


Assuntos
DNA Catalítico , Zinco , Humanos , Camundongos , Animais , Zinco/química , DNA Catalítico/metabolismo , Sistemas CRISPR-Cas , Células HeLa , RNA Guia de Sistemas CRISPR-Cas , Metais/química , Íons/metabolismo , Ácidos
10.
Chembiochem ; 25(2): e202300698, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889156

RESUMO

Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.


Assuntos
Diabetes Mellitus , Fígado Gorduroso Alcoólico , Ratos , Animais , Gotículas Lipídicas , Corantes Fluorescentes
11.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37815001

RESUMO

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

12.
ACS Appl Bio Mater ; 6(12): 5676-5684, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38060806

RESUMO

Investigation of amyloids with the aid of fluorescence microscopy provides crucial insights into the development of numerous diseases associated with the formation of aggregates. Here, we present a series of BF2-functionalized benzothiazoles with electron-donating methoxy group(s), which are tested as amyloid fluorescent markers. We evaluate how the position of donor functional group(s) influences optical properties (fluorescence lifetime (τ) and fluorescence quantum yield (FQY)) in a solution and upon binding to amyloids. We elucidate the importance of surrounding environmental factors (hydrogen-bonding network, polarity, and viscosity) on the observed changes in FQY and evaluate how the localization of a donor influences radiative and nonradiative decay pathways. We conclude that a donor attached to the benzothiazole ring contributes to the increment of radiative decay pathways upon binding to amyloids (kr), while the donor attached to the flexible part of a molecule (with rotational freedom) contributes to a decrease in nonradiative decay pathways (knr). We find that the donor-acceptor-donor architecture allows us to obtain 58 times higher FQY of the dye upon binding to bovine insulin amyloids. Finally, we measure two-photon absorption (2PA) cross sections (σ2) of the dyes and their change upon binding by the two-photon excited fluorescence (2PEF) technique. Measurements reveal that dyes that exhibit the increase/decrease of σ2 values when transferred from highly polar solvents to CHCl3 present a similar behavior upon amyloid binding. Our 2PA experimental values are supported by quantum mechanics/molecular mechanics (QM/MM) simulations. Despite this trend, the values of σ2 are not the same, which points out the importance of two-photon absorption measurements of amyloid-dye complexes in order to understand the performance of 2P probes upon binding.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Animais , Bovinos , Corantes Fluorescentes/química , Amiloide , Microscopia de Fluorescência/métodos
13.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139858

RESUMO

Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.

14.
Biosensors (Basel) ; 13(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37754109

RESUMO

DNA ligases are essential enzymes involved in DNA replication and repair processes in all organisms. These enzymes seal DNA breaks by catalyzing the formation of phosphodiester bonds between juxtaposed 5' phosphate and 3' hydroxyl termini in double-stranded DNA. In addition to their critical roles in maintaining genomic integrity, DNA ligases have been recently identified as diagnostic biomarkers for several types of cancers and recognized as potential drug targets for the treatment of various diseases. Although DNA ligases are significant in basic research and medical applications, developing strategies for efficiently detecting and precisely quantifying these crucial enzymes is still challenging. Here, we report our design and fabrication of a highly sensitive and specific biosensor in which a stable DNA hairpin is utilized to stimulate the generation of fluorescence signals. This probe is verified to be stable under a wide range of experimental conditions and exhibits promising performance in detecting DNA ligases. We anticipate that this hairpin-based biosensor will significantly benefit the development of new targeting strategies and diagnostic tools for certain diseases.

15.
Crit Rev Anal Chem ; : 1-32, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486769

RESUMO

Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.

16.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110795

RESUMO

Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.


Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , Análise Espectral Raman/métodos , Nanoestruturas/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Sondas de Ácido Nucleico
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122767, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120951

RESUMO

H2S is correlated with mitochondrial dysfunction, which results in the death of cells. Two near-infrared fluorescent probes, Mito-HS-1 and Mito-HS-2, were designed for mitochondrial H2S imaging. Initially, the synthesis protocol of expensive IR-780-based hemicyanine (HXPI) was optimized with an appreciate yield of 80 % as compared with 14-56 % previously reported. Iodine atom was introduced to HXPI to obtain iodine-HXPI whose Stokes shift was increased to be 90 nm. On account of the rapid and fast nucleophilic attack of H2S, HXPI-based Mito-HS-1 could be applied for the real time imaging of mitochondrial H2S. Besides some similar optical properties with Mito-HS-1, iodine-HXPI-based Mito-HS-2 exhibited wider linear range (3-150 µM), more stable fluorescent imaging and more favorable specificity in vitro. Both Mito-HS-1 and Mito-HS-2 could be used to image exogenous H2S in cells, with Mito-HS-2 showing fairly better signal-to-noise. Additionally, the Pearson correlation coefficient of two probes demonstrated that they could successfully monitor mitochondrial H2S in A549 cells and Hela cells.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Células HeLa , Mitocôndrias , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos
18.
Adv Drug Deliv Rev ; 197: 114841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088402

RESUMO

Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/terapia , Mitocôndrias , Biomarcadores , Neurônios , Microscopia de Fluorescência
19.
Angew Chem Int Ed Engl ; 62(35): e202300379, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828775

RESUMO

Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.


Assuntos
Ferroptose , Humanos
20.
Mol Imaging Biol ; 25(1): 240-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745354

RESUMO

The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.


Assuntos
Imagem Molecular , Imagem Óptica , Animais , Imagem Óptica/métodos , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA