Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Methods Mol Biol ; 2813: 189-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888779

RESUMO

Classic in vitro coculture assays of pathogens with host cells have contributed significantly to our understanding of the intracellular lifestyle of several pathogens. Coculture assays with pathogens and eukaryotic cells can be analyzed through various techniques including plating for colony-forming units (CFU), confocal microscopy, and flow cytometry. However, findings from in vitro assays require validation in an in vivo model. Several physiological conditions can influence host-pathogen interactions, which cannot easily be mimicked in vitro. Intravital microscopy (IVM) is emerging as a powerful tool for studying host-pathogen interactions by enabling in vivo imaging of living organisms. As a result, IVM has significantly enhanced the understanding of infection mediated by diverse pathogens. The versatility of IVM has also allowed for the imaging of various organs as sites of local infection. This chapter specifically focuses on IVM conducted on the lung for elucidating pulmonary immune response, primarily involving alveolar macrophages, to pathogens. Additionally, in this chapter we outline the protocol for lung IVM that utilizes a thoracic suction window to stabilize the lung for acquiring stable images.


Assuntos
Rastreamento de Células , Microscopia Intravital , Macrófagos Alveolares , Macrófagos Alveolares/citologia , Microscopia Intravital/métodos , Animais , Rastreamento de Células/métodos , Camundongos , Pulmão/citologia , Interações Hospedeiro-Patógeno
2.
Bio Protoc ; 14(11): e5009, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38873017

RESUMO

Leishmaniasis, a neglected tropical disease, is caused by the intracellular protozoan parasite Leishmania. Upon its transmission through a sandfly bite, Leishmania binds and enters host phagocytic cells, ultimately resulting in a cutaneous or visceral form of the disease. The limited therapeutics available for leishmaniasis, in combination with this parasite's techniques to evade the host immune system, call for exploring various methods to target this infection. To this end, our laboratory has been characterizing how Leishmania is internalized by phagocytic cells through the activation of multiple host cell signaling pathways. This protocol, which we use routinely for our experiments, delineates how to infect mammalian macrophages with either promastigote or amastigote forms of the Leishmania parasite. Subsequently, the number of intracellular parasites, external parasites, and macrophages can be quantified using immunofluorescence microscopy and semi-automated analysis protocols. Studying the pathways that underlie Leishmania uptake by phagocytes will not only improve our understanding of these host-pathogen interactions but may also provide a foundation for discovering additional treatments for leishmaniasis. Key features • This protocol visualizes and quantifies multiple intracellular forms of Leishmania. • It offers flexibility at various points for researchers to introduce modifications according to their study needs.

3.
Phytomedicine ; 131: 155766, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865935

RESUMO

BACKGROUND: Migraine is widely recognized as the third most prevalent medical condition globally. Tianshu capsule (TSC), derived from "Da Chuan Xiong Fang" of the Jin dynasty, is integral in the clinical treatment of migraine. However, the chemical properties and therapeutic mechanisms of TSC different portions remain unclear. PURPOSE: This study was designed to investigate the effects of TSC different portions (including small molecular TSCP-SM and polysaccharides TSC-P) on migraine and explore the underlying mechanisms. STUDY DESIGN AND METHODS: First of all, migraine rats were established by nitroglycerin injection and treated with TSC, TSC-P, and TSC-SM. ELISA, qPCR, and immunofluorescence were used to evaluate the pharmacological effects on migraine rats. Secondly, UPLC-Q/TOF-MS and GC--MS were employed to detect the components of TSC-SM. PMP-HPLC, NMR, FT-IR, UV-Vis, AFM, and SEM were used for the chemical profiling of polysaccharides. Thirdly, the metabolic behavior profile of TSC-P was characterized by oral administrated fluorescence-labeled TSC-P and detected by NIRF imaging. Finally, the anti-migraine mechanisms were explored by determining the composition of gut microbiota, analyzing colonic short-chain fatty acids (SCFAs), and examining serum tryptophan-related metabolites. RESULTS: Both small molecules (45 volatiles and 114 small molecules) and polysaccharides (including Glc, Ara, Gal, and Gal A) have exhibited effectiveness in alleviating migraine, and this efficacy is associated with reduced CGRP and iNOS levels, along with increased ß-EP expressions. Further mechanistic exploration revealed that small-molecules exhibited effectiveness in migraine treatment by exerting antioxidative actions, while polysaccharides demonstrated superior therapeutic effects in regulating 5-HT levels. By monitoring the metabolic behavior of polysaccharides with fluorescent labeling, it was observed that TSC-P exhibited poor absorption. Instead, TSC-P demonstrated its therapeutic effects by modulating the aberrations in gut microbiota (including Alloprevotella, Muribaculaceae_ge, and Ruminococcaceae_UCG-005), cecum short-chain fatty acids (such as isobutyric, isovaleric, and valeric acids), and serum tryptophan-related metabolites (including indole-3-acetamide, tryptophol, and indole-3-propionic acid). CONCLUSION: This research provides innovative insights into chemical composition, metabolic behavior, and proposed anti-migraine mechanisms of TSC from a polarity-based perspective, and pioneering an exploration focused on the polysaccharide components within TSC for the first time.


Assuntos
Medicamentos de Ervas Chinesas , Transtornos de Enxaqueca , Polissacarídeos , Ratos Sprague-Dawley , Transtornos de Enxaqueca/tratamento farmacológico , Animais , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Ratos , Polissacarídeos/farmacologia , Polissacarídeos/química , Modelos Animais de Doenças , Cápsulas
4.
Methods Mol Biol ; 2778: 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478271

RESUMO

The SpyCatcher-SpyTag system has become a popular and versatile tool for protein ligation. It is based on a small globular protein (SpyCatcher) that binds to a 13-residue peptide (SpyTag), which subsequently leads to the formation of a covalent isopeptide bond. Thus, the reaction is essentially irreversible. Here, we describe how the SpyCatcher-SpyTag system can be used to label surface-exposed bacterial outer membrane proteins, e.g., for topology mapping or fluorescent time-course experiments. We cover using fluorescence measurements and microscopy to measure labeling efficiency using SpyCatcher fused with superfolder GFP in this chapter.


Assuntos
Proteínas de Membrana , Peptídeos , Proteínas de Membrana/genética , Peptídeos/química , Corantes
5.
Top Curr Chem (Cham) ; 382(1): 7, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400853

RESUMO

Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.


Assuntos
Corantes Fluorescentes , Biologia Sintética , Corantes Fluorescentes/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124039, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38364450

RESUMO

Aiming at the problems of low extraction efficiency, high false detection rate, weak Raman signal and serious interference by fluorescence signal in the detection of microplastics in marine organisms, this paper establishes a set of rapid detection methods for microplastics in organisms, including confocal Raman spectroscopy, fluorescence imaging, differential Raman spectroscopy, and rapid identification of microplastics based on the ELM modeling assistance. Firstly, to address the problem of low extraction efficiency of microplastics, we explored and optimized the digestion method of tissues, which effectively improved the digestion effect of fish tissues and excluded the influence of tissues on microplastics detection. Aiming at the problems of high misdetection rate and low pre-screening efficiency of microplastics, fluorescence imaging technology is adopted to realize the visualization and detection of microplastics, which effectively improves the detection efficiency and precision of microplastics. Based on the confocal microscopy Raman spectroscopy detection system built independently in the laboratory, using 784/785 nm as the excitation light, the differential Raman spectroscopy technique effectively excludes the interference of fluorescence signals in the Raman spectra, and improves the signal-to-noise ratio of the Raman spectra, and the recovery rate of the Raman characteristic peaks in the differential Raman spectroscopy reaches 100 % compared to the traditional baseline correction method, which is 33.3 % higher than that of the baseline correction method. Finally, a microplastic identification model is constructed based on ELM to assist in realizing the rapid and accurate identification of microplastics. The more complete detection method of microplastics in marine organisms proposed in this paper can realize the rapid and nondestructive, efficient and accurate detection of microplastics in fish, which can help to further promote the development of marine microplastics monitoring technology.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/química , Análise Espectral Raman/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Peixes
7.
Sci Rep ; 14(1): 4534, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402303

RESUMO

Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanopartículas , Humanos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Imunogenicidade da Vacina , Influenza Humana/prevenção & controle , Nanopartículas/química , Ensaios Clínicos como Assunto
8.
Methods Cell Biol ; 182: 109-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359974

RESUMO

During cell division, the genome of each eukaryotic cell is copied by thousands of replisomes-large protein complexes consisting of several dozen proteins. Recent studies suggest that the eukaryotic replisome is much more dynamic than previously thought. To directly visualize replisome dynamics in a physiological context, we recently developed a single-molecule approach for imaging replication proteins in Xenopus egg extracts. These extracts contain all the soluble nuclear proteins and faithfully recapitulate DNA replication and repair in vitro, serving as a powerful platform for studying the mechanisms of genome maintenance. Here we present detailed protocols for conducting single-molecule experiments in nuclear egg extracts and preparing key reagents. This workflow can be easily adapted to visualize the dynamics and function of other proteins implicated in DNA replication and repair.


Assuntos
Replicação do DNA , DNA , Animais , Replicação do DNA/genética , DNA/genética , DNA/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
9.
Yi Chuan ; 46(2): 92-108, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340001

RESUMO

Fluorescent RNA is a kind of emerging RNA labeling technique that can be used for in situ labeling and imaging of RNA in live cells, which plays an important role in understanding the function and regulation mechanism of RNA. Biosensing technology based on fluorescent RNA can be applied in dynamic detection of small molecule metabolites and proteins in real time, offering valuable tools for basic life science research and biomedical sensing technology development. In this review, we introduce the development of genetically encoded fluorescent RNA, and the application of fluorescent RNA in RNA imaging and biosensing technology based on fluorescent RNA in biosensing in live cell. Meanwhile, we discuss the direction and challenge of future development of fluorescent RNA technology to provide valuable insights for further development and application of this technology in relevant fields.


Assuntos
Técnicas Biossensoriais , RNA , Técnicas Biossensoriais/métodos , Proteínas , Corantes Fluorescentes
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382574

RESUMO

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.


Assuntos
Proteínas de Escherichia coli , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Galactose/metabolismo , Antígenos O/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos
11.
Methods Mol Biol ; 2743: 181-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147216

RESUMO

Identifying protein-protein interactions is crucial for revealing protein functions and characterizing cellular processes. Manipulating PPIs has become widespread in treating human diseases such as cancer, autoimmunity, and infections. It has been recently applied to the regulation of protein tyrosine phosphatases (PTPs) previously considered undruggable. A broad panel of methods is available for studying PPIs. To complement the existing toolkit, we developed a simple method called fluorescent immunoprecipitation analysis (FIPA). This method is based on coimmunoprecipitation followed by protein gel electrophoresis and fluorescent imaging to visualize components of a protein complex simultaneously on a gel. The FIPA allows the detection of proteins expressed under native conditions and is compatible with mass spectrometry identification of protein bands.


Assuntos
Autoimunidade , Corantes , Humanos , Imunoprecipitação , Espectrometria de Massas
12.
Subcell Biochem ; 106: 153-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159226

RESUMO

Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.


Assuntos
Internalização do Vírus , Microscopia de Fluorescência/métodos
13.
Methods Protoc ; 6(5)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888034

RESUMO

The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 µM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.

14.
Microbiol Spectr ; 11(6): e0099323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795992

RESUMO

IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/genética , Sistema Respiratório , Infecções por Haemophilus/microbiologia , Microscopia
15.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757863

RESUMO

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Sinapses/genética , Junção Neuromuscular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Peptídeos
16.
BMC Biol ; 21(1): 190, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697318

RESUMO

BACKGROUND: Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS: We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS: The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.


Assuntos
Técnicas de Cultura de Células , Corantes Fluorescentes , Microscopia , Coloração e Rotulagem
17.
Int J Biol Macromol ; 253(Pt 2): 126357, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37595710

RESUMO

Grifola frondosa polysaccharide (GFP) is mainly composed of α-1,4 glycosidic bonds and possesses multiple pharmacological activities. However, the absence of pharmacokinetic studies has limited its further development and utilization. Herein, GFP was labeled with 5-DTAF (FGFP) and cyanine 5.5 amine (GFP-Cy5.5) to investigate its gastrointestinal metabolism characteristics and mechanism. Significant distributions of the polysaccharide in the liver and kidneys were observed by near infrared imaging. To investigate the specific distribution form of the polysaccharide, in vitro digestion models were constructed and revealed that FGFP was degraded in saliva and rat small intestine extract. The metabolites were detected in the stomach and small intestine, followed by further degradation in the distal intestine in the in vivo experiment. Subsequent investigations showed that α-amylase was involved in the gastrointestinal degradation of GFP, and its metabolite finally entered the kidneys, where it was excreted directly with urine.


Assuntos
Grifola , Grifola/química , Polissacarídeos/química , Fígado
18.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37567763

RESUMO

To elucidate the specific mechanism by which high-attachment bacteria promote aerobic granular sludge (AGS) formation, a red fluorescent protein mCherry-based biomarker system was developed in the high-attachment strain Stenotrophomonas AGS-1 from AGS. The fluorescent labeling system used plasmid-mediated mCherry expression driven by a Ptac constitutive promoter. mCherry-labeled AGS-1 had normal unimpaired growth, strong fluorescent signals, and good fluorescence imaging. Also, the mCherry labeling system had no effect on the attachment ability of AGS-1. In addition, mCherry-labeled AGS-1 maintained high plasmid stability, even after more than 100 generations. Notably, after the addition of mCherry-labeled AGS-1 into the activated sludge system, the mCherry fluorescence of the sludge system can be used as a good reflection of the relative amount of AGS-1. Moreover, the spatial distribution of mCherry-labeled AGS-1 in the sludge system could be visualized and remained clear even after 5 days by fluorescence imaging. These results revealed that the mCherry-based biomarker system would provide a valuable tool for labeling AGS-1 to monitor the spatial distribution and fate of AGS-1 in AGS, which would help to better understand the mechanism of AGS formation and facilitate the development of AGS technology.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Aerobiose
19.
Drug Metab Pharmacokinet ; 52: 100509, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515836

RESUMO

Although acyl-CoA conjugates are known to have higher reactivity than acyl glucuronides, few studies have been conducted to evaluate the risk of the conjugates. In the present study, we aimed to develop a trapping assay for acyl-CoA conjugates using trapping reagents we have developed previously. It was revealed that Cys-Dan, which has both a thiol and an amino group, was the most effective in forming stable adducts containing an amide bond after intramolecular acyl migration. Additionally, we also developed a hepatocyte-based trapping assay in the present study to overcome the shortcomings of liver microsomes. Although liver microsomes are commonly used as enzyme sources in trapping assays, they lack some of the enzymes required for drug metabolism and detoxification systems. In human hepatocytes, our three trapping reagents, CysGlu-Dan, Dap-Dan and Cys-Dan, captured CYP-dependent reactive metabolites, reactive acyl glucuronides, and reactive acyl-CoA conjugates, respectively. The work suggests that the trapping assay with the reagents in hepatocytes is useful to evaluate the risk of reactive metabolites in drug discovery.


Assuntos
Acil Coenzima A , Glucuronídeos , Humanos , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Acil Coenzima A/farmacologia , Indicadores e Reagentes/metabolismo , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia
20.
Carbohydr Polym ; 317: 121108, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364942

RESUMO

It had been shown that lentinan (LNT) was mainly distributed in the liver after intravenous administration. The study aimed to investigate the integrated metabolic processes and mechanisms of LNT in the liver, as these have not been thoroughly explored. In current work, 5-([4,6-dichlorotriazin-2-yl] amino) fluorescein and cyanine 7 were used to label LNT for tracking its metabolic behavior and mechanisms. Near-infrared imaging demonstrated that LNT was captured mainly by the liver. Kupffer cell (KC) depletion reduced LNT liver localization and degradation in BALB/c mice. Moreover, experiments with Dectin-1 siRNA and Dectin-1/Syk signaling pathway inhibitors showed that LNT was mainly taken up by KCs via the Dectin-1/Syk pathway and promoted lysosomal maturation in KCs via this same pathway, which in turn promoted LNT degradation. These empirical findings offer novel insights into the metabolism of LNT in vivo and in vitro, which will facilitate the further application of LNT and other ß-glucans.


Assuntos
Cogumelos Shiitake , Camundongos , Animais , Células de Kupffer , Lentinano/farmacologia , Transdução de Sinais , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA