Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
Environ Pollut ; 363(Pt 1): 125077, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369869

RESUMO

The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.

2.
Front Toxicol ; 6: 1440331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381597

RESUMO

Many nations have food contact material (FCM) legislation purporting to protect citizens from hazardous chemicals, often specifically by regulating genotoxic carcinogens. Despite such regulations, cancers that are associated with harmful chemical exposures are highly prevalent, especially breast cancer. Using the novel Key Characteristics of Toxicants framework, Kay et al. found 921 substances that are potential mammary carcinogens. By comparing Kay et al.'s chemicals list with our own Database on migrating and extractable food contact chemicals (FCCmigex), we found that 189 (21%) of the potential mammary carcinogens have been measured in FCMs. When limiting these results to migration studies published in 2020-2022, 76 potential mammary carcinogens have been detected to migrate from FCMs sold in markets across the globe, under realistic conditions of use. This implies that chronic exposure of the entire population to potential mammary carcinogens from FCMs is the norm and highlights an important, but currently underappreciated opportunity for prevention. Reducing population-wide exposure to potential mammary carcinogens can be achieved by science-based policy amendments addressing the assessment and management of food contact chemicals.

3.
Food Chem ; 463(Pt 4): 141483, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369604

RESUMO

In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.

4.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274088

RESUMO

The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future.

5.
Int J Biol Macromol ; 279(Pt 4): 135583, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39270899

RESUMO

The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.


Assuntos
Embalagem de Alimentos , Nanocompostos , Embalagem de Alimentos/métodos , Nanocompostos/química , Biopolímeros/química
6.
J Food Sci ; 89(10): 6664-6676, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218809

RESUMO

Kalamata table olives are a widely exported Greek protected designation of origin (PDO) product with distinct organoleptic profile. This study aimed to evaluate the effect of label color on the flavor perception of pasteurized and unpasteurized Kalamata PDO olives. Consumer perception was assessed in two studies. First, four packaged products with green, blue, red, and purple labeling were assessed by participants (n = 106) for preference using rating scales, and emotional profiles were obtained using a check-all-that-apply list of 33 emotions developed in language native to the participants (Greek). The green label resulted to more positive emotion profiling of olive products (i.e., "healthy," "pleased," and "satisfied" with mean scores correspondingly equal to 2.99, 2.95, and 2.87), and red labeled olives resulted to willingness to pay more. In the second study, unpasteurized and pasteurized olives in red and green labeled glass jars were sensorially assessed by participants (n = 124) using rating scales, showing that green labeled products are liked most (mean scores; 5.12 and 5.12), whereas red labeled was scored less (mean scores; 4.96 and 4.67), along emotion profiles with emojis. Principal component analysis of emotional reactions revealed grouping of samples based only on pasteurization/no pasteurization, without been affected by the color of the label, and did not relate to the liking scores. The results showed that sensory perception of olives is significantly affected by the color of packaging (p-value <0.05) due to emotional reactions and color of packaging can enhance the perception of olives' quality as improvement of the processing is limited by the PDO status.


Assuntos
Cor , Comportamento do Consumidor , Rotulagem de Alimentos , Embalagem de Alimentos , Olea , Paladar , Humanos , Rotulagem de Alimentos/métodos , Masculino , Feminino , Adulto , Embalagem de Alimentos/métodos , Grécia , Adulto Jovem , Pessoa de Meia-Idade , Frutas , Pasteurização/métodos , Emoções
7.
J Hazard Mater ; 479: 135658, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39226686

RESUMO

Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 â„ƒ, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.


Assuntos
Fluorocarbonos , Embalagem de Alimentos , Poluentes Químicos da Água , Fluorocarbonos/análise , Fluorocarbonos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Eliminação de Resíduos , Contaminação de Alimentos/análise
8.
Heliyon ; 10(18): e37692, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315154

RESUMO

The increasing global concern over environmental plastic waste has propelled the progress of biodegradable supplies for food packaging. Biopolymer-based packaging is undergoing modifications to enhance its mechanical properties, aligning with the requirements of smart food packaging. Polymer nanocomposites, incorporating reinforcements such as fibers, platelets, and nanoparticles, demonstrate significantly improved mechanical, thermal, optical, and physicochemical characteristics. Fungi, in particular, have garnered significant interest for producing metallic nanoparticles, offering advantages such as easy scaling up, streamlined downstream handling, economic feasibility, and a large surface area. This review provides an overview of nano-additives utilized in biopackaging, followed by an exploration of the recent advancements in using microbial-resistant metal nanoparticles for food packaging. The mycofabrication process, involving fungi in the extracellular or intracellular synthesis of metal nanoparticles, is introduced. Fungal functionalized nanostructures represent a promising avenue for application across various stages of food processing, packaging, and safety. The integration of fungal-derived nanostructures into food packaging materials presents a sustainable and effective approach to combatting microbial contamination." By harnessing fungal biomass, this research contributes to the development of economical and environmentally friendly methods for enhancing food packaging functionality. The findings underscore the promising role of fungal-based nanotechnologies in advancing the field of active food packaging, addressing both safety and sustainability concerns. The study concludes with an investigation into potential fungal isolates for nanoparticle biosynthesis, highlighting their relevance and potential in advancing sustainable and efficient packaging solutions.

9.
Food Chem ; 463(Pt 3): 141430, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39340917

RESUMO

The ideal smart food-packaging film exhibits responsive color warnings and antimicrobial properties when food metamorphism starts. However, in practical applications, these film responses are slow, usually taking several days, which is not conducive to effective antimicrobial effects. In this study, natural plant-derived curcumin was introduced into waterborne polyurethane (WPU) dispersions through two modes: free-state and end-capping. During the film-forming process, under the influence of surface tension, the capped-end curcumin migrated to the surface and further immobilized free curcumin through π-π interactions. Consequently, curcumin accumulated on the film surface, preventing flipping in moist or hydrophobic environments, in addition to acting as a color indicator for the rapid detection of crab spoilage, thus generating ammonia for a real-time response (of approximately 60 s). Simultaneously, the curcumin degraded, producing water-soluble antimicrobial curcumin-degradation products. This study significantly advances the practical application of curcumin in smart food packaging.

10.
Int J Mol Sci ; 25(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39337419

RESUMO

Over the last ten years, researchers' efforts have aimed to replace the classic linear economy model with the circular economy model, favoring green chemical and industrial processes. From this point of view, biologically active molecules, coming from plants, flowers and biomass, are gaining considerable value. In this study, firstly we focus on the development of a green protocol to obtain the purification of anthocyanins from the flower of Callistemon citrinus, based on simulation and on response surface optimization methodology. After that, we utilize them to manufacture and add new properties to bioplastics belonging to class 3, based on modified polyvinyl alcohol (PVA) with increasing amounts from 0.10 to 1.00%. The new polymers are analyzed to monitor morphological changes, optical properties, mechanical properties and antioxidant and antimicrobial activities. Fourier transform infrared spectroscopy (FTIR) spectra of the new materials show the characteristic bands of the PVA alone and a modification of the band at around 1138 cm-1 and 1083 cm-1, showing an influence of the anthocyanins' addition on the sequence with crystalline and amorphous structures of the starting materials, as also shown by the results of the mechanical tests. These last showed an increase in thickening (from 29.92 µm to approx. 37 µm) and hydrophobicity with the concomitant increase in the added anthocyanins (change in wettability with water from 14° to 31°), decreasing the poor water/moisture resistance of PVA that decreases its strength and limits its application in food packaging, which makes the new materials ideal candidates for biodegradable packaging to extend the shelf-life of food. The functionalization also determines an increase in the opacity, from 2.46 to 3.42 T%/mm, the acquisition of antioxidant activity against 2,2-diphenyl-1-picrylhdrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals and, in the ferric reducing power assay, the antimicrobial (bactericidal) activity against different Staphylococcus aureus strains at the maximum tested concentration (1.00% of anthocyanins). On the whole, functionalization with anthocyanins results in the acquisition of new properties, making it suitable for food packaging purposes, as highlighted by a food fresh-keeping test.


Assuntos
Antocianinas , Antioxidantes , Embalagem de Alimentos , Álcool de Polivinil , Antocianinas/química , Antocianinas/farmacologia , Álcool de Polivinil/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Embalagem de Alimentos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
11.
Int J Biol Macromol ; 280(Pt 3): 135900, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313057

RESUMO

Foodborne illness caused by Gram bacteria is the most important food safety issue worldwide. Food packaging film is a very important means to extend the shelf life of food. It reduces microbial contamination and provides food safety assurance during the sales process. However, the food packaging material is derived from plastic. Most plastics are not only non-degradable but also harmful to human health. Biodegradable natural polymers are an ideal substitute, but their poor mechanical properties, hydrophilicity and weak antibacterial properties limit their applications. Rosin is an oily pine ester in the pine family, which is a natural renewable resource with a wide range of sources. It is widely used in various fields, such as surfactants, adhesives, drug loading, antibacterial, etc. However, there are only a few reports on the application of rosin in food packaging. It is worth noting that the unique hydrogenated phenanthrene ring structure of rosin can enhance the thermal stability, hydrophobicity and antibacterial properties of food packaging. More importantly, rosin has a wide range of sources, good biocompatibility, and can be degraded in nature. These advantages are conducive to the application of rosin in food packaging. However, previous reviews focused on resins, silicone rubbers and surfactants. In this review we will focus on the application of rosin in food packaging.

12.
Crit Rev Food Sci Nutr ; : 1-26, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39308025

RESUMO

Chlorogenic acid (CGA) that exhibits various bioactivities holds promise as a natural and safe medicinal agent or food supplement for promoting human health. However, the direct formulation for treatment is severely limited by its low water solubility, poor bioavailability, low plasma stability, and side effects caused by high doses. Fortunately, nanotechnology is widely applied for drug delivery to overcome the partial disadvantages of traditional drug molecules or naturally active components. The properties of CGA containing multiple hydroxyl groups as a green reductant and stabilizer have made the development of CGA-loaded nanomaterials possible. In this review, recent advancements in the design of CGA-loaded nanomaterials based on organic or inorganic nanomaterials were discussed, and the positive effects of nanomaterials on the release properties of active molecules and their targeted distribution in biological systems were indicated. These nanomaterials enhance the physiological activity of CGA in the treatment of various diseases. Moreover, in the field of food, CGA-loaded nanocomposites have been found to optimize the mechanical properties of nano-food packaging, leading to an extended shelf life of food products. The findings of this review provide a valuable foundation and reference for the development of novel CGA-loaded nanomedicines and nano-food packaging.

13.
Compr Rev Food Sci Food Saf ; 23(5): e13433, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39217508

RESUMO

Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.


Assuntos
Embalagem de Alimentos , Embalagem de Alimentos/métodos , Ovos , Animais , Casca de Ovo/química , Biodegradação Ambiental , Gema de Ovo/química , Conservação de Alimentos/métodos , Clara de Ovo/química
14.
Heliyon ; 10(17): e36895, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286085

RESUMO

Essential oils are key ingredients in the development of edible films and provide a diverse approach to improving food preservation, as well as sensory qualities. The pectin and kappa-carrageenan composite films were obtained by adding peppermint essential oil in different quantities. The films after their fabrication were thoroughly evaluated for their attributes, which included mechanical, barrier, optical, chemical, thermal, and antioxidant properties. The visual assessment of the films demonstrated that PEO-loaded films showed a uniform, homogenous, and slightly yellowish appearance. There was an increase in the thickness (0.045 ± 0.006 to 0.060 ± 0.008 mm), elongation at break (12.73 ± 0.74 to 25.05 ± 1.33 %), and water vapor permeability (0.447 ± 0.014 to 0.643 ± 0.014 (g*mm)/(m2*h*kPa)) was observed with the addition of PEO. However, tensile strength (45.84 ± 3.69 to 29.80 ± 2.10 MPa) and moisture content (25.83 ± 0.046 to 21.82 ± 0.23 %) decreased with the incorporation of PEO. Furthermore, thermal and antioxidant properties were enhanced by the inclusion of PEO. The presented investigation can be employed to synthesize food packaging material with antioxidant properties with potential applications in food packaging.

15.
J Hazard Mater ; 480: 135897, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39298966

RESUMO

Humankind are being exposed to a cocktail of chemicals, such as chemicals released from plastic food packaging. It is of great importance to evaluate the prevalence of plastic food packaging-derived chemicals pollution along the flow of food-human. We developed a robust and practical database of 2101 chemical features associated with plastic food packaging that combined data from three sources, 925 of which were acquired from non-target screening of chemical extracts from eight commonly used plastic food packaging materials. In this database, 625 features, especially half of the non-targets, were potential migrants who likely entered our bodies through dietary intake. Biomonitoring analysis of plastic chemical features in foodstuffs or human serum samples showed that approximately 78 % of the 2101 features were detectable and approximately half were non-targets. Of these, 17 plastic chemicals with high detection frequencies (DFs) in the human serum were confirmed to be functional chemical additives. Together, our work indicates that the number of plastic chemicals in our bodies could be far greater than previously recognized, and human exposure to plastic chemicals might pose a potential health risk.

16.
Food Chem ; 463(Pt 2): 141322, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39303471

RESUMO

Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.

17.
Heliyon ; 10(16): e36547, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39258196

RESUMO

Single treatment of metallised food packaging plastics waste (MFPW) has shown disappointing results with recycling rate <20 % due to its complex structure consisting of 10 % aluminium (Al) and 90 % mixed plastic films made of PE, PP, PS, PET, etc. Besides, it is generating many emissions and residues that must be landfilled making it difficult to integrate them into the circular economy. Therefore, a multi-stage recycling (MSR) approach has recently been developed using several sequential mechanical, thermal and chemical processes to recover energy and Al from MFPW with additional revenue for recycling plant operators. The thermal treatment helps to decompose the plastic fraction into wax or oil, gaseous, and solid residue (SR) composed of Al and coal, while the mechanical process can be used as a pre-treatment of MFPW feedstock and SR. Finally, the chemical treatment (leaching and functionalization) can be used to extract Al from SR and to refine coal into carbon microparticles (CPs), respectively. In order to investigate the environmental performance of the proposed MSR system, this research was developed. The investigation was performed using SimaPro life cycle analysis (LCA) tool according to ISO 14040/44 Standards and the impact assessment method is ReCiPe 2016. Five different scenarios were proposed in the constructed LCA layout, namely, conversion of MFPW to a) wax and gas (pyrolysis), b) wax, gas, and aluminium chloride (AlCl3) (pyrolysis and leaching), c) wax, gas, AlCl3, and CPs (pyrolysis, leaching, and functionalization), and d) oil, gas, AlCl3, and CPs (catalytic pyrolysis, leaching, and functionalization). Besides, the oil produced from catalytic pyrolysis is used for generation of electricity (scenario e). The results showed that wax and gas recovery scenario (a) has better environmental potential and environmental benefits compared to incineration practice. The results did not change much after extraction of Al and CPs (scenario b, c), with a few increasing by 2-4% in the total score. While a lot of environmental burdens from upgrading and utilization (Scenario d, e) were recorded, reaching 79 % due to the huge amount of the catalyst was used. Thus, MSR systems have bigger environmental benefits, however, the chemical and catalytic processes still need to be further improved to reduce the effect of terrestrial acidification.

18.
Sci Total Environ ; 954: 176272, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278500

RESUMO

In recent years, organophosphate esters (OPEs) have been widely produced and used as flame retardants and plasticizer additives, posing significant ecological and health risks. Dietary intake is considered to be the primary route of human exposure to OPEs. Plastic food packaging materials are considered a crucial source for contamination of OPEs in food. However, the migration behaviour of OPEs from plastic food packaging materials into foods has received limited attention. In this study, we employed a novel method to prepare migration donors containing 13 kinds of OPEs. The migration behaviours of OPEs from food packaging simulants (polypropylene) to foods (full-fat milk powder) were simulated, and factors influencing the migration of OPEs were examined, including the properties of the target compounds, migration temperature, fat content of the migration receptors, and mass transfer mode. The results indicated that OPEs exhibited a significant migration tendency. Low molecular weight OPEs (< 300 Da) had faster migration efficiency compared to high molecular weight OPEs. The mean migration efficiencies of various OPEs showed a significant negative correlation with their molecular weights (p < 0.01) and a significant positive correlation with temperature (p < 0.01). Except for resorcinol bis(diphenyl phosphate) (RDP), which showed almost no migration, the mean migration efficiencies of other OPEs at 25 °C, 40 °C, and 60 °C were 3.1-37.5 %, 9.0-60.0 %, and 23.9-80.4 %, respectively. Most of the OPEs demonstrated higher migration efficiency in high-fat content food than low-fat content food. The migration of OPEs from food packaging simulants to foods primarily occurred through contact rather than gas-phase mass transfer. Overall, this study uncovers the migration behaviours of OPEs from food packaging simulants to foods and scrutinized the relevant factors influencing the migration. It is expected that the research in terms of the contamination control of OPEs in food will benefit from this work.

19.
Food Chem ; 463(Pt 1): 141116, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39265408

RESUMO

Microbial contamination is the leading cause of food spoilage and food-borne disease. Here, we developed a multifunctional surface based on polylactic acid (PLA) bioplastic with antifouling and antibacterial properties via a facile dual-coating approach. The surface was designed with hierarchical micro/nano-scale roughness and low surface energy. Bactericidal agent polyhexamethylene guanidine hydrochloride (PHMG) was incorporated to endow the film with bactericidal activity. The film had good superhydrophobic, antifouling and antibacterial performance, with a water contact angle of 154.3°, antibacterial efficiency against E. coli and S. aureus of 99.9 % and 99.6 %, respectively, and biofilm inhibition against E. coli and S. aureus of 63.5 % and 68.9 %, respectively. Synergistic effects of antibacterial adhesion and contact killing of bacteria contributed to the significant antibacterial performance of the film. The biobased biodegradable film was highly effective in preventing microbial growth when applied as antibacterial food packaging for poultry product, extending the shelf life of fresh chicken breast up to eight days.

20.
J Sci Food Agric ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258508

RESUMO

Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA