Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Talanta ; 281: 126918, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39305763

RESUMO

The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.


Assuntos
Bactérias , Microbiologia de Alimentos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Bactérias/isolamento & purificação , Técnicas Biossensoriais/métodos , Humanos , Técnicas Eletroquímicas/métodos , Doenças Transmitidas por Alimentos/microbiologia , Análise Espectral Raman/métodos , Colorimetria/métodos
2.
Food Chem ; 464(Pt 1): 141620, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39423521

RESUMO

A multifunctional oxidase-mimicking Ag/Mn3O4 was prepared, catalyzing the 3, 3', 5, 5'-tetramethylbenzidine (TMB) chromogenic reaction. Six foodborne pathogenic bacteria species, including Escherichia coli, Staphylococcus aureus, Salmonella enterica, Listeria monocytogenes, Bacillus cereus, and Cronobacter sakazakii, were observed to differentially inhibit its oxidase-like activity, resulting in decelerating the TMB chromogenic reaction. Owing to these properties, the following achievements were achieved: colorimetric determination of these bacteria with high sensitivity can be achieved using Ag/Mn3O4 + TMB reaction system; precise identification of these bacteria at different concentrations, including individual bacterium, binary mixtures, and even multivariate mixtures, can be effectively realized by combining the Ag/Mn3O4-based colorimetric sensor array with principal component analysis (PCA); broad-spectrum inactivation of these bacteria can be remarkably realized through catalyzation of Ag/Mn3O4 to generate superoxide anion free radicals. Therefore, our proposed Ag/Mn3O4 holds significant application potential in the colorimetric determination, precise identification, and broad-spectrum inactivation of foodborne pathogenic bacteria.

3.
Foods ; 13(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39272589

RESUMO

Cotija and Bola de Ocosingo are artisanal ripened cheeses produced in Mexico. Both are made with raw bovine milk from free-grazing cows and with no starter cultures. Unlike culture-based techniques, molecular methods for pathogen detection in food allow a shorter turnaround time, higher detection specificity, and represent a lower microbiological risk for the analyst. In the present investigation, we analyzed 111 cheese samples (95 Cotija and 16 Bola de Ocosingo) by qPCR (TaqMan®) after an enrichment-culture step specific to each foodborne bacterium. The results showed that 100% of the samples were free of DNA from Listeria monocytogenes, Brucella spp., Escherichia coli enterotoxigenic (ETEC), and O157:H7; 9% amplified Salmonella spp. DNA; and 11.7%, Staphylococcus aureus DNA. However, the threshold cycle (Ct) values of the amplified targets ranged between 23 and 30, indicating DNA from non-viable microorganisms. Plate counts supported this assumption. In conclusion, 100% of the cheeses analyzed were safe to consume, and the enrichment step before DNA extraction proved essential to discern between viable and non-viable microorganisms. Hygienic milking, milk handling, cheese manufacturing, and ripening are crucial to achieve an adequate microbiological quality of cheeses made with raw milk.

4.
Front Microbiol ; 15: 1403579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983630

RESUMO

Introduction: Bacterial foodborne pathogens pose a substantial global public health concern, prompting government agencies and public health organizations to establish food safety guidelines and regulations aimed at mitigating the risk of foodborne illness. The advent of DNA-based amplification coupled with mass spectrometry, known as MassARRAY analysis, has proven to be a highly precise, sensitive, high-throughput, and cost-effective method for bacterial detection. This study aimed to develop, validate, and evaluate a MassARRAY-based assay for the detection and identification of significant enteropathogenic bacteria. Methods: The MassARRAY-based assay was developed for the detection of 10 crucial bacterial foodborne pathogens, including Campylobacter coli, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Salmonella spp., Shigella spp., and Staphylococcus aureus. The assay was optimized using the reference gDNA (n = 19), followed by validation using gDNA (n = 85) of reference and laboratory isolates. Additionally, the evaluation of the assay's reaction using a mixture of gDNA from all nine targeted species was performed. The limit of detection of the developed MassARRAY-based assay was determined using bacterial cells. Moreover, the validation method for field samples was evaluated by comparing it with standard microbiological testing methods routinely analyzed. Results: The developed MassARRAY-based assay demonstrated 100% concordance with known bacterial pure cultures. The assay's reaction using a mixture of gDNA from all nine targeted species revealed the MassARRAY's capability to detect all targeted species in a single assay with the lowest concentration of 1 ng/µL of gDNA. The limits of detection of the assay range from 357 ± 101 to 282,000 ± 79,196 cells. Moreover, the validation of the assay in field samples revealed a 100% correlation between the data obtained from the standard microbiological method and the MassARRAY-based assay. Discussion: These findings suggested that the developed MassARRAY-based assay exhibited the excellence in high-throughput detection of foodborne bacterial pathogens with high accuracy, reliability, and potential applicability within real-world field samples.

5.
J Food Sci Technol ; 61(3): 563-572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327855

RESUMO

Pathogenic bacteria contaminations and related diseases in food industries is an urgent issue to solve. The present study aimed to explore natural food biopreservatives from microorganisms. Using dilution-plate method, a strain BBW1542 with antimicrobial activities against various foodborne pathogenic bacteria was isolated from the seabed silt of Beibu Gulf, which was identified as Bacillus subtilis by the morphological observation and 16S rDNA sequences. The antimicrobial substances of B. subtilis BBW1542 exhibited an excellent stability under cool/heat treatment, UV irradiation, acid/alkali treatment, and protease hydrolysis. The genome sequencing analysis and antiSMASH prediction indicated that B. subtilis BBW1542 contained the gene cluster encoding lipopeptides and bacteriocin subtilosin A. MALDI-TOF-MS analysis showed that the lipopeptides from B. subtilis BBW1542 contained C14 and C15 surfactin homologues, together with fengycin homologues of C18 fengycin A/C16 fengycin B and C19 fengycin A/C17 fengycin B. In silico analysis showed that an eight-gene (sboA-albABCDEFG) operon was involved in the biosynthesis of subtilosin A in B. subtilis BBW1542, and the encoded subtilosin A presented an evident closed-loop structure containing 35 amino acids with a molecular weight of 3425.94 Da. Overall, the antagonistic B. subtilis BBW1542 displayed significant resource value and offered a promising alternative in development of food biopreservation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05864-3.

6.
Anal Chim Acta ; 1290: 342203, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246741

RESUMO

Foodborne pathogenic bacteria are widespread in various foods, whose cross-contamination and re-contamination are critical influences on food safety. Rapid, accurate, and sensitive detection of foodborne pathogenic bacteria remains a topic of concern. CRISPR/Cas12a can recognize double-stranded DNA directly, showing great potential in nucleic acid detection. However, few studies have investigated the cleavage properties of CRISPR/Cas12a. In this study, the trans-cleavage properties of LbCas12a and AsCas12a were investigated to construct the detection methods for foodborne pathogenic bacteria. The highly sensitive fluorescent strategies for foodborne pathogens were constructed by analyzing the cleavage rates and properties of substrates at different substrate concentrations. Cas12a was activated in the presence of foodborne pathogenic target sequence was present, resulting in the cleavage of a single-stranded reporter ssDNA co-labelled by fluorescein quencher and fluorescein. The sensitivity and specificity of the Cas12a fluorescent strategy was investigated with Salmonella and Staphylococcus aureus as examples. The results showed that AsCas12a was slightly more capable of trans-cleavage than LbCas12a. The detection limits of AsCas12a for Salmonella and Staphylococcus aureus were 24.9 CFU mL-1 and 1.50 CFU mL-1, respectively. In all the seven bacteria, Staphylococcus aureus and Salmonella were accurately discriminated. The study provided a basis for constructing and improving the CRISPR/Cas12a fluorescence strategies. The AsCas12a-based detection strategy is expected to be a promising method for field detection.


Assuntos
Sistemas CRISPR-Cas , Infecções Estafilocócicas , Humanos , Fluorescência , Bactérias , Corantes , Fluoresceína , Staphylococcus aureus/genética
7.
Crit Rev Anal Chem ; : 1-18, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917532

RESUMO

Sensitive and rapid determination of foodborne pathogenic bacteria is of practical importance for the control and prevention of foodborne illnesses. Nowadays, with the prosperous development of fluorescence assays, fluorescence resonance energy transfer (FRET)-derived diagnostic strategies are extensively employed in quantitative analysis of different pathogenic bacteria in food-related matrices, which displays a rapid, simple, stable, reliable, cost-effective, selective, sensitive, and real-time way. Considering the extensive efforts that have been made in this field so far, we here discuss the up-to-date developments of FRET-based diagnostic approaches for the determination of key foodborne pathogens like Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella spp., Campylobacter spp., and Bacillus cereus in complex food-related matrices. Moreover, the principle of this technology, the choosing standards of acceptor-donor pairs, and the fluorescence properties are also profiled. Finally, the current prospects and challenges in this field are also put forward.

8.
Anal Chim Acta ; 1279: 341816, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827621

RESUMO

Simultaneous detection of multiple foodborne pathogens is of great importance for ensuring food safety. Herein, we present a sensitive dual-channel electrochemical biosensor based on copper metal organic frameworks (CuMOF) and lead metal organic framework (PbMOF) for simultaneous detection of Salmonella typhimurium (S. typhimurium) and Listeria monocytogenes (L. monocytogenes). The MOF-based nanotags were prepared by functionalizing gold nanoparticles loaded CuMOF (Au@CuMOF) and PbMOF (Au@PbMOF) with signal DNA sequences 1 (sDNA1) and sDNA2, respectively. By selecting invA of S. typhimurium and inlA gene of L. monocytogenes as targe sequences, a sandwich-typed dual-channel biosensor was developed on glassy carbon electrodes (GCE) through hybridization reactions. The sensitive detection of S. typhimurium and L. monocytogenes was achieved by the direct differential pulse voltametric (DPV) signals of Cu2+ and Pb2+. Under optimal conditions, channel 1 of the biosensor showed linear range for invA gene of S. typhimurium in 1 × 10-14-1 × 10-8 M with low detection limit (LOD) of 3.42 × 10-16 M (S/N = 3), and channel 2 of the biosensor showed linear range for inlA gene of L. monocytogenes in 1 × 10-13-1 × 10-8 M with LOD of 6.11 × 10-15 M (S/N = 3). The dual-channel biosensor showed good selectivity which were used to detect S. typhimurium with linear range of 5-1.0 × 104 CFU mL-1 (LOD of 2.33 CFU mL-1), and L. monocytogenes with linear range of 10 - 1.0 × 104 CFU mL-1 (LOD of 6.61 CFU mL-1).


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro , Salmonella typhimurium , Limite de Detecção
9.
Foods ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569162

RESUMO

Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of the EO extracted from one of the most representative oregano species, that is, Origanum vulgare (subsp. hirtum), against two important foodborne pathogens, Salmonella enterica (serovar Typhimurium) and Listeria monocytogenes. For this, the minimum inhibitory concentrations of the EO against the planktonic and biofilm growth of each bacterium were determined (MICs, MBICs), together with the minimum bactericidal and biofilm eradication concentrations (MBCs, MBECs). The EO was also analyzed for its chemical composition by gas chromatography-mass spectrometry analysis (GC-MS). The influence of EO exposure on the expression of some important virulence genes (hly, inlA, inlB and prfA) was also studied in L. monocytogenes. Results revealed a strong antibacterial and antibiofilm action with MICs and MBICs ranging from 0.03% to 0.06% (v/v) and from 0.06% to 0.13% (v/v), respectively. The application of the EO at 6.25% (v/v) for 15 min resulted in the total eradication of the biofilm cells of both pathogens. The EO was mainly composed of thymol, p-cymene, γ-terpinene and carvacrol. The 3 h exposure of L. monocytogenes planktonic cells to the EO at its MBIC (0.06% v/v) resulted in the significant downregulation of all the studied genes (p < 0.05). To sum, the results obtained advocate for the further exploitation of the antimicrobial action of oregano EO in food and health applications.

10.
J Agric Food Chem ; 71(29): 10982-10988, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432923

RESUMO

Food safety is a concerning issue globally. Foodborne-pathogenic-bacteria-derived foodborne disease outbreaks have increased the threat to human health. The accurate and rapid detection of foodborne bacteria is of great significance for food safety. A fiber-optic-based biosensor has emerged as a powerful technique for the point-of-care testing of foodborne bacteria in food and agricultural products. This Perspective discusses the opportunities and challenges of fiber-optic-based biosensors for foodborne bacteria detection. The corresponding solution strategies to promote the application of this innovative technology in food and agricultural product detection for food safety and human health are also discussed and proposed.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Inocuidade dos Alimentos , Técnicas Biossensoriais/métodos , Doenças Transmitidas por Alimentos/microbiologia , Tecnologia , Bactérias/genética
11.
J Agric Food Chem ; 71(27): 10250-10268, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37389539

RESUMO

Rapid and sensitive detection of foodborne pathogenic bacteria is particularly important for the prevention and control of foodborne diseases. The lateral flow strip biosensor (LFSB) is one of the most promising point-of-care detection tools and has been widely used in food safety monitoring. This review introduces recent advances in the detection of foodborne pathogenic bacteria using LFSBs. According to different bacterial biomarkers, we summarize the direct and indirect sensing strategies of bacterial LFSBs. The direct sensing strategies for whole bacterial cells are divided into antibodies, antibody alternatives, and label-free according to the recognition elements. The indirect sensing strategies refer to the detection of bacterial nucleic acids and metabolites. Next, we compare and discuss the applications of direct and indirect sensing strategies. Finally, the existing challenges, future perspectives, and development directions are discussed, which will facilitate the theoretical innovation and practical application for bacterial LFSBs.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Humanos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Anticorpos , Bactérias/genética
12.
J Hazard Mater ; 454: 131485, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149945

RESUMO

Foodborne pathogenic bacteria are recognized as the main causes of microbial contamination in food safety. Early screening and ultrasensitive detection of foodborne pathogenic bacteria is critical procedure to guarantee food safety. Argonaute is emerging as a new tool for detection owing to the programmability and high specificity. We reported a Novel and One-step cleavage method based on Argonaute by integrating Tag-specific primer extension and Exonuclease I (Exo I) for the first time, termed as NOTE-Ago. In this method, the invA of Salmonella typhi and nuc gene of Staphylococcus aureus were amplified using Tag-specific primer and the remaining primers were digested by Exo I. Then amplicons were served as the guide DNA for PfAgo. Consequently, the fluorophore-quencher reporter could be cleaved via PfAgo, resulting in changes in fluorescent intensity. With this strategy, target nucleic acid could be dexterously converted into fluorescent signals. The NOTE-Ago assay could detect 1 CFU/mL with a dynamic range from 1 to 108 CFU/mL. The satisfactory selectivity of NOTE-Ago assay further facilitated its application for detecting S. typhi- and S. aureus-contaminated food samples. This work enriches the toolbox of Argonaute-based detection and provides a one-step cleavage and rebuilding-free method for ultrasensitive detection of bacteria.


Assuntos
Bactérias , Staphylococcus aureus , Staphylococcus aureus/genética , Corantes Fluorescentes , Microbiologia de Alimentos
13.
Foodborne Pathog Dis ; 20(2): 67-79, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779943

RESUMO

Shikonin has anticancer, anti-inflammatory, and wound healing activities. Vibrio vulnificus is an important marine foodborne pathogen with a high fatality rate and rapid pathogenesis that can infect humans through ingestion and wounds. In this study, the antibacterial activity and possible antibacterial mechanism of shikonin against V. vulnificus were investigated. In addition, the ability of shikonin to control V. vulnificus infection in both pathways was assessed by artificially contaminated oysters and full-thickness excised skin-infected mice. Shikonin treatment can cause abnormal cell membrane function, as evidenced by hyperpolarization of the cell membrane, significant decreased intracellular ATP concentration (p < 0.05), significant increased intracellular reactive oxygen species and malondialdehyde content (p < 0.05), decreased cell membrane integrity, and changes in cell morphology. Shikonin at 40 and 80 µg/mL reduced bacterial numbers in shikonin-contaminated oysters by 3.58 and 2.18 log colony-forming unit (CFU)/mL. Shikonin can promote wound healing in mice infected with V. vulnificus by promoting the formation of granulation tissue, hair follicles, and sebaceous glands, promoting epithelial cell regeneration and epidermal growth factor production. These findings suggest that shikonin has a strong inactivation effect on V. vulnificus and can be used in food production and wound healing to effectively control V. vulnificus and reduce the number of diseases associated with it.


Assuntos
Antibacterianos , Ostreidae , Vibrio vulnificus , Animais , Camundongos , Antibacterianos/farmacologia , Ostreidae/microbiologia , Vibrio vulnificus/efeitos dos fármacos , Cicatrização
14.
Foods ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673329

RESUMO

Rapid, accurate and visual point-of-care testing (POCT) methods for pathogenic bacteria detection are essential for avoiding foodborne diseases caused by pathogens or their toxins. In this study, we proposed a rapid and visual detection method that we named "Cas12aVIP". By combining recombinase polymerase amplification (RPA), a CRISPR/Cas12a system and a cationic-conjugated polythiophene derivative (poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT) mixed with single-stranded DNA (ssDNA)), the solution turned red in the absence of the target DNA based on conformational modifications of the conjugated backbone of PMNT, whereas it displayed yellow, thus realizing the colorimetric detection of DNA. The Cas12aVIP method yielded high specificity and no interference from other nontargeted bacteria. The detection was accomplished in 40 min and the signal could be observed by the naked eye under natural light, presenting great potential for a variety of rapid nucleic acid detection applications without requiring technical expertise or ancillary equipment.

15.
Biosens Bioelectron ; 219: 114790, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274427

RESUMO

Foodborne pathogenic bacteria seriously endanger human health and must be rapidly identified for control. Magnetic relaxation switching biosensors (MRS) are ideal for rapid bacteria detection due to their high signal-to-noise ratio and immunity to sample matrix signal interference. However, conventional MRS still has some challenges in terms of sensitivity, specificity, and stability due to insufficient cross-linking or non-specific binding of magnetic nanoparticles (MNPs) to the target. To address these challenges, we firstly proposed a novel contamination-free uracil-DNA glycosylase (UDG) assisted V-shaped PCR driven CRISPR/Cas12a-MRS (UPC-MRS) biosensor, which combines contamination-free ultrafast nucleic acid amplification and powerful CRISPR/Cas12a system. It has an extremely specific quadruple signal guarantee realized by the merits of UDG anti-contamination, PCR primer specificity matching, the CRISPR/Cas12a system's precise recognition abilities, and magnetic probe signal unaffected by the sample matrix. As a cascade combined with original terminal deoxynucleotidyl transferase (Tdt)-mediated signal amplification technology, this platform can achieve Salmonella detection at concentrations as low as 53 CFU/mL, which is more sensitive than most existing MRS sensors, and it displays accuracy and applicability in real sample detection. This novel UPC-MRS biosensors avoid the common aerosol pollution problem of previous CRISPR/Cas12a systems which after combining with nucleic acid amplification, hence not only offers an alternative toolbox for Salmonella and other pathogen detection with satisfactory specificity and sensitivity, but also has potential for future applications across diverse fields.

16.
Foods ; 11(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36496717

RESUMO

Multiplex polymerase chain reaction (PCR) assays are mainly used to simultaneously detect or identify multiple pathogenic microorganisms. To achieve high specificity for detecting foodborne pathogenic bacteria, specific primers need to be designed for the target strains. In this study, we designed and achieved a multiplex PCR system for detecting eight foodborne pathogenic bacteria using specific genes: toxS for Vibrio parahaemolyticus, virR for Listeria monocytogenes, recN for Cronobacter sakazakii, ipaH for Shigella flexneri, CarA for Pseudomonas putida, rfbE for Escherichia coli, vvhA for Vibrio vulnificus, and gyrB for Vibrio alginolyticus. The sensitivity of the single system in this study was found to be 20, 1.5, 15, 15, 13, 14, 17, and 1.8 pg for V. parahaemolyticus, L. monocytogenes, E. coli O157:H7, C. sakazakii, S. flexneri, P. putida, V. vulnificus, and V. alginolyticus, respectively. The minimum detection limit of the multiplex system reaches pg/µL detection level; in addition, the multiplex system exhibited good specificity and stability. Finally, the assays maintained good specificity and sensitivity of 104 CFU/mL for most of the samples and we used 176 samples of eight aquatic foods, which were artificially contaminated to simulate the detection of real samples. In conclusion, the multiplex PCR method is stable, specific, sensitive, and time-efficient. Moreover, the method is well suited for contamination detection in these eight aquatic foods and can rapidly detect pathogenic microorganisms.

17.
Front Microbiol ; 13: 874658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419427

RESUMO

Rapid and accurate identification of foodborne pathogenic bacteria is of great importance because they are often responsible for the majority of serious foodborne illnesses. The confocal Raman microspectroscopy (CRM) is a fast and easy-to-use method known for its effectiveness in detecting and identifying microorganisms. This study demonstrates that CRM combined with chemometrics can serve as a rapid, reliable, and efficient method for the detection and identification of foodborne pathogenic bacteria without any laborious pre-treatments. Six important foodborne pathogenic bacteria including S. flexneri, L. monocytogenes, V. cholerae, S. aureus, S. typhimurium, and C. botulinum were investigated with CRM. These pathogenic bacteria can be differentiated based on several characteristic peaks and peak intensity ratio. Principal component analysis (PCA) was used for investigating the difference of various samples and reducing the dimensionality of the dataset. Performances of some classical classifiers were compared for bacterial detection and identification including decision tree (DT), artificial neural network (ANN), and Fisher's discriminant analysis (FDA). Correct recognition ratio (CRR), area under the receiver operating characteristic curve (ROC), cumulative gains, and lift charts were used to evaluate the performance of models. The impact of different pretreatment methods on the models was explored, and pretreatment methods include Savitzky-Golay algorithm smoothing (SG), standard normal variate (SNV), multivariate scatter correction (MSC), and Savitzky-Golay algorithm 1st Derivative (SG 1st Der). In the DT, ANN, and FDA model, FDA is more robust for overfitting problem and offers the highest accuracy. Most pretreatment methods raised the performance of the models except SNV. The results revealed that CRM coupled with chemometrics offers a powerful tool for the discrimination of foodborne pathogenic bacteria.

18.
Crit Rev Anal Chem ; : 1-10, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831973

RESUMO

In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.

19.
Wei Sheng Yan Jiu ; 51(1): 63-67, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35341496

RESUMO

OBJECTIVE: To investigate the microbial contamination in dried fruit products in China. METHODS: In 2019, 2917 samples of dried fruit products on the market were collected, and examined for aerobic bacterial count, coliforms, molds, yeasts, Salmonella and Listeria monocytogenes according to the method specified in GB 4789. RESULTS: A total of 34.42%(1004/2917)of the samples had molds above 50 CFU/g and 9.46%(276/2917)of the samples had yeast above 50 CFU/g. The occurrence of aerobic plate count above 10~4 CFU/g and coliforms above 10~2 CFU/g was 5.01%(146/2917)and 2.98%(87/2917), respectively. The detection rate of Salmonella and Listeria monocytogenes were 0.14%(4/2917) and 0.03%(1/2917), respectively. Microbial contamination in different kinds of dried fruit products varied widely, with dried wolfberries and dried durian having the worst overall hygiene. There were differences in microbial contamination of dried fruit products in different regions. In general, samples collected in South China, Southwest China and Central China had more serious microbial contamination. There was no significant difference in microbial contamination between dried fruit products with different packaging and sampling places. CONCLUSION: The hygienic condition of dried fruit products is generally poor in 2019.


Assuntos
Frutas , Listeria monocytogenes , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Frutas/microbiologia , Salmonella
20.
Compr Rev Food Sci Food Saf ; 21(2): 1868-1912, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35194932

RESUMO

Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.


Assuntos
Contaminação de Alimentos , Sistemas Automatizados de Assistência Junto ao Leito , Bactérias , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA