Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Physiol Biochem ; 213: 108863, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917739

RESUMO

Alternative splicing enhances diversity at the transcriptional and protein levels that widely involved in plant response to biotic and abiotic stresses. V. amurensis is an extremely cold-tolerant wild grape variety, however, studies on alternative splicing (AS) in amur grape at low temperatures are currently poorly understood. In this study, we analyzed full-length transcriptome and RNA seq data at 0, 2, and 24 h after cold stress in V. amurensis roots. Following quality control and correction, 221,170 high-quality full-length non-concatemer (FLNC) reads were identified. A total of 16,181 loci and 30,733 isoforms were identified. These included 22,868 novel isoforms from annotated genes and 2815 isoforms from 2389 novel genes. Among the distinguished novel isoforms, 673 Long non-coding RNAs (LncRNAs) and 18,164 novel isoforms open reading frame (ORF) region were found. A total of 2958 genes produced 8797 AS events, of which 189 genes were involved in the low-temperature response. Twelve transcription factors show AS during cold treatment and VaMYB108 was selected for initial exploration. Two transcripts, Chr05.63.1 (VaMYB108short) and Chr05.63.2 (VaMYB108normal) of VaMYB108, display up-regulated expression after cold treatment in amur grape roots and are both localized in the nucleus. Only VaMYB108normal exhibits transcriptional activation activity. Overexpression of either VaMYB108short or VaMYB108normal in grape roots leads to increased expression of the other transcript and both increased chilling resistance of amur grape roots. The results improve and supplement the genome annotations and provide insights for further investigation into AS mechanisms during cold stress in V. amurensis.


Assuntos
Processamento Alternativo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Transcriptoma , Vitis , Vitis/genética , Processamento Alternativo/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética
2.
J Biol Chem ; 299(9): 105130, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543366

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Assuntos
Anotação de Sequência Molecular , RNA Longo não Codificante , RNA-Seq , Animais , Desenvolvimento Embrionário/genética , Mamíferos/embriologia , Mamíferos/genética , Anotação de Sequência Molecular/métodos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Retroviridae/genética , RNA Longo não Codificante/genética , RNA-Seq/métodos , Sítio de Iniciação de Transcrição , Transcriptoma/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
3.
Data Brief ; 46: 108838, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593766

RESUMO

Myristica fatua is a tropical fruit tree species originating from Indonesia. Very few genomic resources are available for the species. We developed a full-length transcriptome assembly using long-read sequencing (MinION Nanopore technology) and produced 4.3 million reads (3.5 G of bases). The assembled full-length transcript was constructed using the RATTLE program and assembled 21,098 transcripts. The transcript ranged from 201 - 14,174 bp, and N50 was 2,017 bp. The transcripts were annotated with the UNIPROT database using BlastX. The functional annotation was performed using Blast2go software. The 8,445 microsatellite motif-containing contigs were identified. The raw reads are deposited in the ENA (European Nucleotide Archive) with ENA experiment accession number ERX6798613.

4.
Methods Mol Biol ; 2590: 49-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335491

RESUMO

Haplotyping individual full-length transcripts can be important in diagnosis and treatment of certain genetic diseases. One set of diseases, repeat expansions of simple tandem repeat sequences are the cause of over 40 neurological disorders. In many of these conditions, expanding a polymorphic repeat beyond a given threshold has been strongly associated with disease onset and severity. Given that most repeat expansions are inherited in an autosomal dominant pattern, repeat expansion disorders are typically characterized by a heterozygous expansion locus associated with a single haplotype. Precision genetic medicines can be used to selectively target expansion-containing sequences in a haplotype-specific manner.However, repeat expansion lengths often exceed the capacity of next-generation sequencing (NGS) reads. Therefore, the accurate length and haplotype determination of repeat expansions requires special considerations and requires the development of custom methods. Here we highlight a method for targeted haplotype phasing of the HTT gene, which can be adopted for use with other full-length transcripts and in other repeat expansion disorders.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequências de Repetição em Tandem , Haplótipos , Heterozigoto , Análise de Sequência de DNA
5.
Front Microbiol ; 13: 993914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325025

RESUMO

The dinoflagellate Akashiwo sanguinea is a harmful algal species and commonly observed in estuarine and coastal waters around the world. Harmful algal blooms (HABs) caused by this species lead to serious environmental impacts in the coastal waters of China since 1998 followed by huge economic losses. However, the full-length transcriptome information of A. sanguinea is still not fully explored, which hampers basic genetic and functional studies. Herein, single-molecule real-time (SMRT) sequencing technology was performed to characterize the full-length transcript in A. sanguinea. Totally, 83.03 Gb SMRT sequencing clean reads were generated, 983,960 circular consensus sequences (CCS) with average lengths of 3,061 bp were obtained, and 81.71% (804,016) of CCS were full-length non-chimeric reads (FLNC). Furthermore, 26,461 contigs were obtained after being corrected with Illumina library sequencing, with 20,037 (75.72%) successfully annotated in the five public databases. A total of 13,441 long non-coding RNA (lncRNA) transcripts, 3,137 alternative splicing (AS) events, 514 putative transcription factors (TFs) members from 23 TF families, and 4,397 simple sequence repeats (SSRs) were predicted, respectively. Our findings provided a sizable insights into gene sequence characteristics of A. sanguinea, which can be used as a reference sequence resource for A. sanguinea draft genome annotation, and will contribute to further molecular biology research on this harmful bloom algae.

6.
Fish Shellfish Immunol ; 129: 106-113, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995372

RESUMO

Turbot (Scophthalmus maximus) is an important cold-water economic fish. However, the production and development of turbot industry has been constantly hindered by the frequent occurrence of some diseases. Lacking full-length transcriptome for turbot limits immune gene discoveries and gene structures analysis. Therefore, we generated a full-length transcriptome using mixed immune-related tissues of turbot with PacBio Sequel platform. In this study, a total of 31.7 Gb high quality data were generated with the average subreads length of 2618 bp. According to the presence of 5' and 3' primers as well as poly (A) tails, FL (Full-length) and NFL (Non-full-length) isoforms were obtained. Meanwhile, we identified 32,003 non-redundant transcripts, 76.02% of which was novel isoforms of known genes. In addition, 12,176 alternative splicing (AS) events, 6614 polyadenylation (APA) events, 1905 transcription factors, and 2703 lncRNAs were identified. This work is a comprehensive report on the full-length transcriptome of immune-related tissues of turbot, and it also provides valuable molecular resources for future research on the adaptation mechanisms and functional genomics of turbot.


Assuntos
Linguados , RNA Longo não Codificante , Animais , Linguados/genética , Perfilação da Expressão Gênica/veterinária , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Transcriptoma , Água
7.
Front Plant Sci ; 13: 930131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800603

RESUMO

Hybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant Rf2 gene can restore the fertility of the CMS-D8 sterile line. However, the molecular mechanism of fertility restoration remains unclear in CMS-D8 cotton that limits wider utilization of three-line hybrid breeding. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to understand fertility restoration mechanism of CMS-D8 cotton. In total, 228,106 full-length non-chimeric transcriptome sequences were obtained from anthers of developing flowering buds. The analysis results identified 3,174 novel isoforms, 2,597 novel gene loci, 652 long non-coding RNAs predicted from novel isoforms, 7,234 alternative splicing events, 114 fusion transcripts, and 1,667 genes with alternative polyadenylation. Specially, two novel genes associated with restoration function, Ghir_D05.742.1 and m64033_190821_201011/21103726/ccs were identified and showed significant higher levels of expression in restorer line than sterile and maintainer lines. Our comparative full-length transcriptome analysis provides new insights into the molecular function of Rf2 fertility restorer gene. The results of this study offer a platform for fertility restoration candidate gene discovery in CMS-D8 cotton.

8.
Mol Biol Rep ; 49(9): 8401-8411, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708860

RESUMO

BACKGROUND: In the Philippines, 26% of the total agricultural land is devoted to coconut production making coconut one of the most valuable industrial crop in the country. However, the country's multimillion-dollar coconut industry is threatened by the outbreak of coconut scale insect (CSI) and other re-emerging insect pests promoting national research institutes to work jointly on developing new tolerant coconut varieties. Here, we report the cloning and characterization of coronatine-insensitive 1 (COI1) gene, one of the candidate insect defense genes, using 'Catigan Green Dwarf' (CATD) genome sequence assembly as reference. METHODS AND RESULTS: Two (2) splicing variants were identified and annotated-CnCOI1b-1 and CnCOI1b-2. The full-length cDNA of CnCOI1b-1 was 7919 bp with an ORF of 1176 bp encoding for a deduced protein of 391 amino acids while CnCOI1b-2 has 2360 bp full-length cDNA with an ORF of 1743 bp encoding a deduced protein of 580 amino acids. The 3D structural model for the two (2) isoforms were generated through homology modelling. Functional analysis revealed that both isoforms are involved in various physiological and developmental plant processes including defense response of plants to insects and pathogens. Phylogenetic analysis confirms high degree of COI1 protein conservation during evolution, especially among monocot species. Differential gene expression via qRT-PCR analysis revealed a seven-fold increase of COI1 gene expression in coconut post introduction of CSI relative to base levels. CONCLUSION: This study provided the groundwork for further research on the actual role of COI1 in coconut in response to insect damage. The findings of this study are also vital to facilitate the development of improved insect-resistant coconut varieties for vibrant coconut industry.


Assuntos
Aminoácidos , Cocos , Aminoácidos/metabolismo , Clonagem Molecular , Cocos/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Indenos , Filogenia
9.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100340

RESUMO

Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.


Assuntos
Diabetes Mellitus Tipo 2 , Regulação da Expressão Gênica , Hibernação , Ursidae , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hibernação/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ursidae/genética , Ursidae/metabolismo
10.
Front Genet ; 12: 664974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527015

RESUMO

Cattle (Bos taurus) is one of the most widely distributed livestock species in the world, and provides us with high-quality milk and meat which have a huge impact on the quality of human life. Therefore, accurate and complete transcriptome and genome annotation are of great value to the research of cattle breeding. In this study, we used error-corrected PacBio single-molecule real-time (SMRT) data to perform whole-transcriptome profiling in cattle. Then, 22.5 Gb of subreads was generated, including 381,423 circular consensus sequences (CCSs), among which 276,295 full-length non-chimeric (FLNC) sequences were identified. After correction by Illumina short reads, we obtained 22,353 error-corrected isoforms. A total of 305 alternative splicing (AS) events and 3,795 alternative polyadenylation (APA) sites were detected by transcriptome structural analysis. Furthermore, we identified 457 novel genes, 120 putative transcription factors (TFs), and 569 novel long non-coding RNAs (lncRNAs). Taken together, this research improves our understanding and provides new insights into the complexity of full-length transcripts in cattle.

11.
PeerJ ; 9: e11808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316413

RESUMO

BACKGROUND: The tree peony (Paeonia section Moutan DC), one of the traditional famous flowers with both ornamental and medicinal value, was widely used in China. Surprisingly little is known about the full-length transcriptome sequencing in tree peony, limiting the research on its gene function and molecular mechanism. The trehalose phosphate phosphatase (TPS) family genes has been found to affect plant growth and development and the function of TPS genes in Paeonia ostii is unknown. METHODS: In our study, we performed single molecule, full-length transcript sequencing in P. ostii. 10 TPS family members were identified from PacBio sequencing for bioinformatics analysis and transcriptional expression analysis. RESULTS: A total of 230,736 reads of insert (ROI) sequences and 114,215 full-Length non-chimeric reads (FLNC) were obtained for further ORFs and transcription factors prediction, SSR analysis and lncRNA identification. NR, Swissprot, GO, COG, KOG, Pfam and KEGG databases were used to obtain annotation information of transcripts. 10 TPS family members were identified with molecular weights between 48.0 to 108.5 kD and isoelectric point between 5.61 to 6.37. Furthermore, we found that TPS family members contain conserved TPP or TPS domain. Based on phylogenetic tree analysis, PoTPS1 protein was highly similar to AtTPS1 protein in Arabidopsis. Finally, we analyzed the expression levels of all TPS genes in P. ostii and found PoTPS5 expressed at the highest level. In conclusion, this study combined the results of the transcriptome to systematically analyze the 10 TPS family members, and sets a framework for further research of this important gene family in development of tree peony.

12.
Front Genet ; 12: 664260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093657

RESUMO

A comprehensive annotation of transcript isoforms in domesticated species is lacking. Especially considering that transcriptome complexity and splicing patterns are not well-conserved between species, this presents a substantial obstacle to genomic selection programs that seek to improve production, disease resistance, and reproduction. Recent advances in long-read sequencing technology have made it possible to directly extrapolate the structure of full-length transcripts without the need for transcript reconstruction. In this study, we demonstrate the power of long-read sequencing for transcriptome annotation by coupling Oxford Nanopore Technology (ONT) with large-scale multiplexing of 93 samples, comprising 32 tissues collected from adult male and female Hereford cattle. More than 30 million uniquely mapping full-length reads were obtained from a single ONT flow cell, and used to identify and characterize the expression dynamics of 99,044 transcript isoforms at 31,824 loci. Of these predicted transcripts, 21% exactly matched a reference transcript, and 61% were novel isoforms of reference genes, substantially increasing the ratio of transcript variants per gene, and suggesting that the complexity of the bovine transcriptome is comparable to that in humans. Over 7,000 transcript isoforms were extremely tissue-specific, and 61% of these were attributed to testis, which exhibited the most complex transcriptome of all interrogated tissues. Despite profiling over 30 tissues, transcription was only detected at about 60% of reference loci. Consequently, additional studies will be necessary to continue characterizing the bovine transcriptome in additional cell types, developmental stages, and physiological conditions. However, by here demonstrating the power of ONT sequencing coupled with large-scale multiplexing, the task of exhaustively annotating the bovine transcriptome - or any mammalian transcriptome - appears significantly more feasible.

13.
Front Genet ; 12: 635043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889177

RESUMO

Schima superba (Theaceae) is a subtropical evergreen tree and is used widely for forest firebreaks and gardening. It is a plant that tolerates salt and typically accumulates elevated amounts of manganese in the leaves. With large ecological amplitude, this tree species grows quickly. Due to its substantial biomass, it has a great potential for soil remediation. To evaluate the thorough framework of the mRNA, we employed PacBio sequencing technology for the first time to generate S. Superba transcriptome. In this analysis, overall, 511,759 full length non-chimeric reads were acquired, and 163,834 high-quality full-length reads were obtained. Overall, 93,362 open reading frames were obtained, of which 78,255 were complete. In gene annotation analyses, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Non-Redundant (Nr) databases were allocated 91,082, 71,839, 38,914, and 38,376 transcripts, respectively. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT), and Coding Non-Coding Index (CNCI) databases and observed 8,551, 9,174, 20,720, and 18,669 lncRNAs, respectively. Moreover, nine genes were randomly selected for the expression analysis, which showed the highest expression of Gene 6 (Na_Ca_ex gene), and CAX (CAX-interacting protein 4) was higher in manganese (Mn)-treated group. This work provided significant number of full-length transcripts and refined the annotation of the reference genome, which will ease advanced genetic analyses of S. superba.

14.
Plants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805478

RESUMO

Rhododendronsimsii is one of the top ten famous flowers in China. Due to its historical value and high aesthetic, it is widely popular among Chinese people. Various colors are important breeding objectives in Rhododendron L. The understanding of the molecular mechanism of flower color formation can provide a theoretical basis for the improvement of flower color in Rhododendron L. To generate the R.simsii transcriptome, PacBio sequencing technology has been used. A total of 833,137 full-length non-chimeric reads were obtained and 726,846 high-quality full-length transcripts were found. Moreover, 40,556 total open reading frames were obtained; of which 36,018 were complete. In gene annotation analyses, 39,411, 18,565, 16,102 and 17,450 transcriptions were allocated to GO, Nr, KEGG and COG databases, correspondingly. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with Protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT) and Coding Non Coding Index (CNCI) databases and observed 6170, 2265, 4084 and 1240 lncRNAs, respectively. Based on the results, most genes were enriched in the flavonoid biosynthetic pathway. The eight key genes on the anthocyanin biosynthetic pathway were further selected and analyzed by qRT-PCR. The F3'H and ANS showed an upward trend in the developmental stages of R. simsii. The highest expression of F3'5'H and FLS in the petal color formation of R. simsii was observed. This research provided a huge number of full-length transcripts, which will help to proceed genetic analyses of R.simsii. native, which is a semi-deciduous shrub.

15.
Front Genet ; 11: 462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595694

RESUMO

The objective of the study is to reveal the freezing tolerance mechanisms of wheat by combining the emerging single-molecule real-time (SMRT) sequencing technology PacBio Sequel and Illumina sequencing. Commercial semiwinter wheat Zhoumai 18 was exposed to -6°C for 4 h at the four-leave stage. Leaves of the control group and freezing-treated group were used to perform cDNA library construction. PacBio SMRT sequencing yielded 51,570 high-quality isoforms from leaves of control sample of Zhoumai 18, encoded by 20,366 gene loci. In total, 73,695 transcript isoforms, corresponding to 23,039 genes, were identified from the freezing-treated leaves. Compared with transcripts from the International Wheat Genome Sequencing Consortium RefSeq v1.1, 57,667 novel isoforms were discovered, which were annotated 21,672 known gene loci, as well as 3,399 novel gene loci. Transcriptome characterization including alterative spliced events, alternative polydenylation sites, transcription factors, and fusion transcripts were also analyzed. Freezing-responsive genes and signals were uncovered and proved that the ICE-ERF-COR pathway and ABA signal transduction play a vital role in the freezing response of wheat. In this study, PacBio sequencing and Illumina sequencing were applied to investigate the freezing tolerance in common wheat, and the transcriptome results provide insights into the molecular regulation mechanisms under freezing treatment.

16.
Front Genet ; 11: 603454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519908

RESUMO

Growth, one of the most important traits monitored in domestic animals, is essentially associated with bone development. To date, no large-scale transcriptome studies investigating bone development in bighead carp have been reported. In this study, we applied Isoform-sequencing technology to uncover the entire transcriptomic landscape of the bighead carp (Hypophthalmichthys nobilis) in early growth stage, and obtained 63,873 non-redundant transcripts, 20,907 long non-coding RNAs, and 1,579 transcription factors. A total of 381 alternative splicing events were seen in the frontal and parietal bones with another 784 events simultaneously observed in the vertebral bones. Coupling this to RNA sequencing (RNA-seq) data, we identified 27 differentially expressed unigenes (DEGs) in the frontal and parietal bones and 45 DEGs in the vertebral bones in the fast-growing group of fish, when compared to the slow-growing group of fish. Finally, 15 key pathways and 20 key DEGs were identified and found to be involved in regulation of early growth such as energy metabolism, immune function, and cytoskeleton function and important cellular pathways such as the arginine and proline metabolic pathway (p4ha1), FoxO signaling pathway (sgk1), cell adhesion molecules (b2m, ptprc, and mhcII), and peroxisome proliferator-activated receptor signaling pathway (scd). We established a novel full-length transcriptome resource and combined it with RNA-seq to elucidate the mechanism of genetic regulation of differential growth in bighead carp. The key DEGs identified in this study could fuel further studies investigating associations between growth and bone development and serve as a source of potential candidate genes for marker-assisted breeding programs.

17.
BMC Plant Biol ; 19(1): 517, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31771515

RESUMO

BACKGROUND: Anther development has been extensively studied at the transcriptional level, but a systematic analysis of full-length transcripts on a genome-wide scale has not yet been published. Here, the Pacific Biosciences (PacBio) Sequel platform and next-generation sequencing (NGS) technology were combined to generate full-length sequences and completed structures of transcripts in anthers of Chinese cabbage. RESULTS: Using single-molecule real-time sequencing (SMRT), a total of 1,098,119 circular consensus sequences (CCSs) were generated with a mean length of 2664 bp. More than 75% of the CCSs were considered full-length non-chimeric (FLNC) reads. After error correction, 725,731 high-quality FLNC reads were estimated to carry 51,501 isoforms from 19,503 loci, consisting of 38,992 novel isoforms from known genes and 3691 novel isoforms from novel genes. Of the novel isoforms, we identified 407 long non-coding RNAs (lncRNAs) and 37,549 open reading frames (ORFs). Furthermore, a total of 453,270 alternative splicing (AS) events were identified and the majority of AS models in anther were determined to be approximate exon skipping (XSKIP) events. Of the key genes regulated during anther development, AS events were mainly identified in the genes SERK1, CALS5, NEF1, and CESA1/3. Additionally, we identified 104 fusion transcripts and 5806 genes that had alternative polyadenylation (APA). CONCLUSIONS: Our work demonstrated the transcriptome diversity and complexity of anther development in Chinese cabbage. The findings provide a basis for further genome annotation and transcriptome research in Chinese cabbage.


Assuntos
Brassica rapa/genética , Flores/genética , Flores/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , RNA Longo não Codificante , RNA de Plantas , Transcriptoma
18.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450745

RESUMO

Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads as well as 109.13 and 104.10 Gb of sequencing data for avocado mesocarp and seed, respectively, during five developmental stages. High-quality reads were assembled into 100,837 unigenes with an average length of 847.40 bp (N50 = 1725 bp). Additionally, 16,903 differentially expressed genes (DEGs) were detected, 17 of which were related to carotenoid biosynthesis. The expression levels of most of these 17 DEGs were higher in the mesocarp than in the seed during five developmental stages. In this study, the avocado mesocarp and seed transcriptome were also sequenced using single-molecule long-read sequencing to acquired 25.79 and 17.67 Gb clean data, respectively. We identified 233,014 and 238,219 consensus isoforms in avocado mesocarp and seed, respectively. Furthermore, 104 and 59 isoforms were found to correspond to the putative 11 carotenoid biosynthetic-related genes in the avocado mesocarp and seed, respectively. The isoform numbers of 10 out of the putative 11 genes involved in the carotenoid biosynthetic pathway were higher in the mesocarp than those in the seed. Besides, alpha- and beta-carotene contents in the avocado mesocarp and seed during five developmental stages were also measured, and they were higher in the mesocarp than in the seed, which validated the results of transcriptome profiling. Gene expression changes and the associated variations in gene dosage could influence carotenoid biosynthesis. These results will help to further elucidate carotenoid biosynthesis in avocado.


Assuntos
Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Persea/genética , Persea/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma , Vias Biossintéticas , Biologia Computacional/métodos , Dosagem de Genes , Perfilação da Expressão Gênica , Ontologia Genética , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Desenvolvimento Vegetal/genética
19.
BMC Plant Biol ; 18(1): 300, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477428

RESUMO

BACKGROUND: Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is the most widely planted forage legume after alfalfa. Although a draft genome sequence was published already, the sequences and completed structure of mRNA transcripts remain unclear, which limit further explore on red clover. RESULTS: In this study, the red clover transcriptome was sequenced using single-molecule long-read sequencing to identify full-length splice isoforms, and 29,730 novel isoforms from known genes and 2194 novel isoforms from novel genes were identified. A total of 5492 alternative splicing events was identified and the majority of alter spliced events in red clover was corrected as intron retention. In addition, of the 15,229 genes detected by SMRT, 8719 including 186,517 transcripts have at least one poly(A) site. Furthermore, we identified 4333 long non-coding RNAs and 3762 fusion transcripts. CONCLUSIONS: We analyzed full-length transcriptome of red clover with PacBio SMRT. Those new findings provided important information for improving red clover draft genome annotation and fully characterization of red clover transcriptome.


Assuntos
Processamento Alternativo , RNA de Plantas , Trifolium/genética , Éxons , Genoma de Planta , Íntrons , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , RNA Longo não Codificante , Análise de Sequência de RNA , Transcriptoma
20.
Breast Cancer Res ; 19(1): 127, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183387

RESUMO

BACKGROUND: Laboratory assays evaluating the effect of DNA sequence variants on BRCA1 mRNA splicing may contribute to classification by providing molecular evidence. However, our knowledge of normal and aberrant BRCA1 splicing events to date has been limited to data derived from assays targeting partial transcript sequences. This study explored the utility of nanopore sequencing to examine whole BRCA1 mRNA transcripts and to provide accurate categorisation of in-frame and out-of-frame splicing events. METHODS: The exon structure of BRCA1 transcripts from a previously studied control lymphoblastoid cell line were assessed using MinION nanopore sequencing of long-range reverse transcriptase-PCR amplicons. RESULTS: Our study identified and characterised 32 complete BRCA1 isoforms, including 18 novel isoforms which showed skipping of multiple contiguous and/or non-contiguous exons. Furthermore, we show that known BRCA1 exon skipping events, such as Δ(9,10) and Δ21, can co-occur in a single transcript, with some isoforms containing four or more alternative splice junctions. Fourteen novel isoforms were formed entirely from a combination of previously identified alternative splice junctions, suggesting that the total number of BRCA1 isoforms might be lower than the number of splicing events reported previously. CONCLUSIONS: Our results highlight complexity in BRCA1 transcript structure that has not been described previously. This finding has key implications for predicting the translation frame of splicing transcripts, important for interpreting the clinical significance of spliceogenic variants. Future research is warranted to quantitatively assess full-length BRCA1 transcript levels, and to assess the application of nanopore sequencing for routine evaluation of potential spliceogenic variants.


Assuntos
Processamento Alternativo , Éxons , Genes BRCA1 , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA Complementar/química , DNA Complementar/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Degradação do RNAm Mediada por Códon sem Sentido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA