Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Dev Cell ; 59(14): 1876-1891.e7, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788715

RESUMO

Amyloids are known as irreversible aggregates associated with neurodegenerative diseases. However, recent evidence shows that a subset of amyloids can form reversibly and fulfill essential cellular functions. Yet, the molecular mechanisms regulating functional amyloids and distinguishing them from pathological aggregates remain unclear. Here, we investigate the conserved principles of amyloid reversibility by studying the essential metabolic enzyme pyruvate kinase (PK) in yeast and human cells. We demonstrate that yeast PK (Cdc19) and human PK (PKM2) form reversible amyloids through a pH-sensitive amyloid core. Stress-induced cytosolic acidification promotes aggregation via protonation of specific glutamate (yeast) or histidine (human) residues within the amyloid core. Mutations mimicking protonation cause constitutive PK aggregation, while non-protonatable PK mutants remain soluble even upon stress. Physiological PK aggregation is coupled to metabolic rewiring and glycolysis arrest, causing severe growth defects when misregulated. Our work thus identifies an evolutionarily conserved, potentially widespread mechanism regulating functional amyloids during stress.


Assuntos
Amiloide , Piruvato Quinase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Concentração de Íons de Hidrogênio , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Amiloide/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mutação/genética , Glicólise , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
Prog Mol Biol Transl Sci ; 206: 473-494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38811088

RESUMO

Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.


Assuntos
Agregados Proteicos , Humanos , Animais , Dobramento de Proteína , Proteínas/metabolismo , Proteínas/química , Agregação Patológica de Proteínas/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612850

RESUMO

This study aimed to elucidate the similarities and differences between amyloid-forming corpora amylacea (CA) in the prostate and lung, examine the nature of CAs in cystic tumors of the atrioventricular node (CTAVN), and clarify the distinctions between amyloid-forming CA and spheroid-type amyloid deposition. We conducted proteomics analyses using liquid chromatography-tandem mass spectrometry with laser microdissection and immunohistochemistry to validate the characteristics of CAs in the lung and prostate. Our findings revealed that the CAs in these organs primarily consisted of common proteins (ß2-microglobulin and lysozyme) and locally produced proteins. Moreover, we observed a discrepancy between the histopathological and proteomic analysis results in CTAVN-associated CAs. In addition, while the histopathological appearance of the amyloid-forming CAs and spheroid-type amyloid deposits were nearly identical, the latter deposition lacked ß2-microglobulin and lysozyme and exhibited evident destruction of the surrounding tissue. A literature review further supported these findings. These results suggest that amyloid-forming CAs in the lung and prostate are formed through a shared mechanism, serving as waste containers (wasteosomes) and/or storage for excess proteins (functional amyloids). In contrast, we hypothesize that while amyloid-forming CA and spheroid-type amyloid deposits are formed, in part, through common mechanisms, the latter are pathological.


Assuntos
Muramidase , Placa Amiloide , Masculino , Humanos , Imuno-Histoquímica , Proteômica , Proteínas Amiloidogênicas
4.
mBio ; 15(4): e0041924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501920

RESUMO

The discovery of functional amyloids in bacteria dates back several decades, and our understanding of the Escherichia coli curli biogenesis system has gradually expanded over time. However, due to its high aggregation propensity and intrinsically disordered nature, CsgA, the main structural component of curli fibrils, has eluded comprehensive structural characterization. Recent advancements in cryo-electron microscopy (cryo-EM) offer a promising tool to achieve high-resolution structural insights into E. coli CsgA fibrils. In this study, we outline an approach to addressing the colloidal instability challenges associated with CsgA, achieved through engineering and electrostatic repulsion. Then, we present the cryo-EM structure of CsgA fibrils at 3.62 Å resolution. This structure provides new insights into the cross-ß structure of E. coli CsgA. Additionally, our study identifies two distinct spatial arrangements within several CsgA fibrils, a 2-CsgA-fibril pair and a 3-CsgA-fibril bundle, shedding light on the intricate hierarchy of the biofilm extracellular matrix and laying the foundation for precise manipulation of CsgA-derived biomaterials.IMPORTANCEThe visualization of the architecture of Escherichia coli CsgA amyloid fibril has been a longstanding research question, for which a high-resolution structure is still unavailable. CsgA serves as a major subunit of curli, the primary component of the extracellular matrix generated by bacteria. The support provided by this extracellular matrix enables bacterial biofilms to resist antibiotic treatment, significantly impacting human health. CsgA has been identified in members of Enterobacteriaceae, with pathogenic E. coli being the most well-known model system. Our novel insights into the structure of E. coli CsgA protofilaments form the basis for drug design targeting diseases associated with biofilms. Additionally, CsgA is widely researched in biomaterials due to its self-assembly characteristics. The resolved spatial arrangements of CsgA amyloids revealed in our study will further enhance the precision design of functional biomaterials. Therefore, our study uniquely contributes to the understanding of CsgA amyloids for both microbiology and material science.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/química , Proteínas de Escherichia coli/química , Amiloide , Microscopia Crioeletrônica , Biofilmes , Materiais Biocompatíveis , Proteínas de Bactérias/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124094, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503257

RESUMO

The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Substituição de Aminoácidos , Amiloide/química , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/química , Íons
6.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542086

RESUMO

Protein amyloids have attracted attention for their application as functional amyloid materials because of their strong properties, such as high resistance to chemical or biological degradation, despite their medical issues. Amyloids can be used for various applications by modifying the amyloid surface with functional materials, such as proteins and polymers. In this study, we investigated the effect of polyallylamine (PAA), a functional cationic polymer as a candidate for amyloid modification, on the amyloids formed from amyloid ß (Aß) peptide. It was demonstrated for the first time that PAA can bind to Aß amyloids through fluorescence observations and the quenched emission from the tyrosine at site 10 near the fibrillogenic core. These results suggest that PAA could be used to develop new functional amyloids. However, notably, coating Aß amyloid with PAA could affect conventional amyloid detection assays such as thioflavin T assay and detection using antibodies. Thus, our results also indicate that consideration would be necessary for the analysis of functional amyloids coated with various polymers.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Poliaminas , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Anticorpos , Proteínas Amiloidogênicas , Polímeros
7.
Prion ; 18(1): 28-39, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38512820

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are multifunctional proteins with integral roles in RNA metabolism and the regulation of alternative splicing. These proteins typically contain prion-like domains of low complexity (PrLDs or LCDs) that govern their assembly into either functional or pathological amyloid fibrils. To date, over 60 mutations targeting the LCDs of hnRNPs have been identified and associated with a spectrum of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). The cryo-EM structures of pathological and functional fibrils formed by different hnRNPs have been recently elucidated, including those of hnRNPA1, hnRNPA2, hnRNPDL-2, TDP-43, and FUS. In this review, we discuss the structural features of these amyloid assemblies, placing particular emphasis on scrutinizing the impact of prevalent disease-associated mutations mapping within their LCDs. By performing systematic energy calculations, we reveal a prevailing trend of destabilizing effects induced by these mutations in the amyloid structure, challenging the traditionally assumed correlation between pathogenicity and amyloidogenic propensity. Understanding the molecular basis of this discrepancy might provide insights for developing targeted therapeutic strategies to combat hnRNP-associated diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Príons , Humanos , Príons/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Mutação
8.
Int J Biol Macromol ; 254(Pt 1): 127775, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287601

RESUMO

Protein fibrillation is commonly associated with pathologic amyloidosis. However, under appropriate conditions several proteins form fibrillar structures in vitro that can be used for biotechnological applications. MNEI and its variants, firstly designed as single chain derivatives of the sweet protein monellin, are also useful models for protein fibrillary aggregation studies. In this work, we have drawn attention to a protein dubbed Mut9, already characterized as a "super stable" MNEI variant. Comparative analysis of the respective X-ray structures revealed how the substitutions present in Mut9 eliminate several unfavorable interactions and stabilize the global structure. Molecular dynamic predictions confirmed the presence of a hydrogen-bonds network in Mut9 which increases its stability, especially at neutral pH. Thioflavin-T (ThT) binding assays and Fourier transform infrared (FTIR) spectroscopy indicated that the aggregation process occurs both at acidic and neutral pH, with and without addition of NaCl, even if with a different kinetics. Accordingly, Transmission Electron Microscopy (TEM) showed a fibrillar organization of the aggregates in all the tested conditions, albeit with some differences in the quantity and in the morphology of the fibrils. Our data underline the great potential of Mut9, which combines great stability in solution with the versatile conversion into nanostructured biomaterials.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Plantas , Proteínas de Plantas/química , Microscopia Eletrônica de Transmissão , Amiloide/química , Concentração de Íons de Hidrogênio
9.
Biotechnol Bioeng ; 121(1): 26-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822225

RESUMO

Amyloid is defined as a fibrous quaternary structure formed by assembling protein or peptide monomers into intermolecularly hydrogen linked ß-sheets. There is a prevalent issue with protein aggregation and the buildup of amyloid molecules, which results in human neurological illnesses including Alzheimer's and Parkinson's. But it is now evident that many organisms, like bacteria, fungi as well as humans, use the same fibrillar structure to carry out a variety of biological functions, such as structure and protection supporting interface transitions and cell-cell recognition, protein control and storage, epigenetic inheritance, and memory. Recent discoveries of self-assembling amyloidogenic peptides and proteins, based on the amyloid core structure, give rise to interesting biomaterials with potential uses in numerous industries. These functions dramatically diverge from the initial conception of amyloid fibrils as intrinsically diseased entities. Apart from the natural ability of amyloids to spontaneously arrange themselves and their exceptional material characteristics, this aspect has prompted extensive research into engineering artificial amyloids for generating various nanostructures, molecular substances, and combined materials. Here, we discuss significant developments in the artificial design of useful amyloids as well as how amyloid materials serve as examples of how function emerges from protein self-assembly at various length scales.


Assuntos
Amiloide , Nanoestruturas , Humanos , Amiloide/química , Nanoestruturas/química , Agregados Proteicos , Bactérias/metabolismo
10.
Trends Biochem Sci ; 49(2): 119-133, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926650

RESUMO

Amyloids are implicated in neurodegenerative and systemic diseases, yet they serve important functional roles in numerous organisms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that control central events of RNA biogenesis in normal and diseased cellular conditions. Many of these proteins contain prion-like sequences of low complexity, which not only assemble into functional fibrils in response to cellular cues but can also lead to disease when missense mutations arise in their sequences. Recent advances in cryo-electron microscopy (cryo-EM) have provided unprecedented high-resolution structural insights into diverse amyloid assemblies formed by hnRNPs and structurally related RBPs, including TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Orb2, hnRNPA1, hnRNPA2, and hnRNPDL-2. This review provides a comprehensive overview of these structures and explores their functional and pathological implications.


Assuntos
Amiloide , Proteínas de Ligação a RNA , Microscopia Crioeletrônica , Proteínas de Ligação a RNA/metabolismo , Amiloide/química , Amiloide/metabolismo
11.
Curr Opin Struct Biol ; 83: 102706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783197

RESUMO

Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Fatores de Virulência , Antivirais
12.
Plant J ; 116(2): 329-346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675599

RESUMO

Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.

13.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762146

RESUMO

Fungi produce surface-active proteins, among which hydrophobins are the most characterized and attractive also for their ability to form functional amyloids. Our most recent findings show that these abilities are shared with other classes of fungal proteins. Indeed, in this paper, we compared the characteristics of a class I hydrophobin (Vmh2 from Pleurotus ostreatus) and an unknown protein (named PAC3), extracted from the marine fungal strain Acremonium sclerotigenum, which does not belong to the same protein family based on its sequence features. They both proved to be good biosurfactants, stabilizing emulsions in several conditions (concentration, pH, and salinity) and decreasing surface tension to a comparable value to that of some synthetic surfactants. After that, we observed for both Vmh2 and PAC3 the formation of giant fibers without the need for harsh conditions or long incubation time, a remarkable ability herein reported for the first time.


Assuntos
Cisteína , Pleurotus , Proteínas Fúngicas , Proteínas de Membrana , Salinidade
14.
Appl Microbiol Biotechnol ; 107(23): 7269-7285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741938

RESUMO

Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
16.
ACS Appl Mater Interfaces ; 15(32): 38335-38345, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539960

RESUMO

Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.


Assuntos
Amiloide , Amiloide/química , Radicais Livres/química , Melaninas/química , Raios Ultravioleta , Técnicas Eletroquímicas , Citoproteção
17.
Chemphyschem ; 24(19): e202300439, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37477386

RESUMO

Nucleation and growth of amyloid fibrils were found to only occur in supersaturated solutions above a critical concentration (ccrit ). The biophysical meaning of ccrit remained mostly obscure, since typical low values of ccrit in the sub-µM range hamper investigations of potential oligomeric states and their structure. Here, we investigate the parathyroid hormone PTH84 as an example of a functional amyloid fibril forming peptide with a comparably high ccrit of 67±21 µM. We describe a complex concentration dependent prenucleation ensemble of oligomers of different sizes and secondary structure compositions and highlight the occurrence of a trimer and tetramer at ccrit as possible precursors for primary fibril nucleation. Furthermore, the soluble state found in equilibrium with fibrils adopts to the prenucleation state present at ccrit . Our study sheds light onto early events of amyloid formation directly related to the critical concentration and underlines oligomer formation as a key feature of fibril nucleation. Our results contribute to a deeper understanding of the determinants of supersaturated peptide solutions. In the current study we present a biophysical approach to investigate ccrit of amyloid fibril formation of PTH84 in terms of secondary structure, cluster size and residue resolved intermolecular interactions during oligomer formation. Throughout the investigated range of concentrations (1 µM to 500 µM) we found different states of oligomerization with varying ability to contribute to primary fibril nucleation and with a concentration dependent equilibrium. In this context, we identified the previously described ccrit of PTH84 to mark a minimum concentration for the formation of homo-trimers/tetramers. These investigations allowed us to characterize molecular interactions of various oligomeric states that are further converted into elongation competent fibril nuclei during the lag phase of a functional amyloid forming peptide.


Assuntos
Amiloide , Hormônio Paratireóideo , Modelos Moleculares , Amiloide/química , Peptídeos , Estrutura Secundária de Proteína , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química
18.
Structure ; 31(3): 230-243, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750098

RESUMO

Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.


Assuntos
Amiloide , Amiloide/química , Espectroscopia de Ressonância Magnética
19.
Macromol Biosci ; 23(4): e2200525, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811263

RESUMO

Functional amyloids belong to an increasing class of non-toxic biologic material, in contrast to the prominent disease-related amyloids. Herein, this work reports on the fibril formation of the parathyroid hormone PTH84 as a representative candidate following the same generic principles of primary and secondary nucleation. Employing Thioflavin T monitored kinetics analyses and negative-staining transmission electron microscopy, an intricate, concentration dependent behavior of time dependent generation and morphologies of PTH84 fibrils are found. While at low peptide concentrations, fibril formation is driven by surface catalyzed secondary nucleation, an increased amount of peptides cause a negative feedback on fibril elongation and secondary nucleation. Moreover, the source of primary nuclei is found to regulate the overall macroscopic fibrillation. As a consequence, the concentration dependent competition of primary versus secondary nucleation pathways is found to dominate the mechanism of fibril generation. This work is able to hypothesize an underlying monomer-oligomer equilibrium providing high-order species for primary nucleation and, additionally, negatively affecting the available monomer pool.


Assuntos
Amiloide , Hormônio Paratireóideo , Amiloide/metabolismo , Cinética , Peptídeos beta-Amiloides
20.
FEBS Lett ; 597(7): 995-1006, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36700832

RESUMO

The parathyroid hormone (PTH) regulates the calcium and phosphate level in blood after secretion from parathyroid chief cells. The pre- and pro-sequences of precursor preproPTH get cleaved during PTH maturation. In secretory granules, PTH forms functional amyloids. Using thioflavin T fibrillation assays, circular dichroism, NMR spectroscopy, and cellular cAMP activation, we show that the pro-sequence prevents premature fibrillation by impairing primary nucleation because of Coulomb repulsion of positively charged residues. Under seeding or high salt conditions or in the presence of heparin at pH 5.5, proPTH fibril formation is delayed, but the monomer release properties are conserved. ProPTH can still activate in cellulo PTH receptor 1 but with impaired potency. These findings give some perspectives on medical applications of PTH in hormone therapy.


Assuntos
Amiloide , Precursores de Proteínas , Hormônio Paratireóideo/química , Hormônio Paratireóideo/fisiologia , Glândulas Paratireoides , Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA