Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
J Environ Sci (China) ; 148: 364-374, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095171

RESUMO

Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.


Assuntos
Diatomáceas , Salinidade , Silício , Poluentes Químicos da Água , Adsorção , Silício/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Estuários , Água do Mar/química , Metais/química
2.
ChemSusChem ; : e202401875, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354813

RESUMO

The combination of the quantum confinement effect of quantum dots (QDs) and unique photoelectric properties of perovskite semiconductors make perovskite quantum dots (PQDs) a promising candidate for photoelectric devices. To truly unlock their potential, a deep understanding of structure-property relationship is paramount. Among the various factors influencing this relationship, the role of surface ligands cannot be overstated. The polarity, conductivity, stability, and interaction effects of these ligands with QD surfaces create complicated ligand-QDs relationships, which greatly influences the successful synthesis of QDs. In essence, the surface chemistry of ligands serves as a critical determinant in shaping the properties of both the resulting QDs and QD-based devices. To address this, our paper introduces an innovative approach to studying ligands, utilizing their inherent functional groups as a classification criterion. It is begun by discussing the types of surface defects of PQDs and the functional groups used for passivation, emphasizing the importance of analyzing ligands based on their functional groups. Then the passivation mechanisms of ligands with various functional groups and their impact on enhancing QD performance are delved into. Ultimately, this paper summarizes and offers several design principles and rules for PQDs surface ligands that can be applied in most scenarios.

3.
Materials (Basel) ; 17(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274599

RESUMO

In this study, recycled carbon fibers (rCFs) recovered from waste carbon composites were used to manufacture wet-laid nonwoven fabrics. The aim was to improve dispersibility by investigating the changes in the dispersibility of carbon fibers (CFs) based on the content of the dispersant carboxymethyl cellulose (CMC) and the binder polyvinyl alcohol (PVA), and the length and basis weight of the CFs. In addition, the chemical property changes and oxygen functional group mechanisms based on the content of the CMC dispersant and PVA binder were investigated. The nonwoven fabrics made with desized CFs exhibited significantly improved dispersibility. For nonwoven fabrics produced with a fixed binder PVA content of 10%, optimal dispersibility was achieved at a dispersant CMC concentration of 0.4%. When the dispersant CMC concentration was fixed at 0.4% and the binder PVA content at 10%, the best dispersibility was observed at a CF length of 3 mm, while the maximum tensile strength was achieved at a fiber length of 6 mm. Dispersibility remained almost consistent across different basis weights. As the dispersant CMC concentration increased from 0.2% to 0.6%, the oxygen functional groups, such as carbonyl group (C=O), lactone group (O=C-O), and natrium hydroxide (NaOH), also increased. However, hydroxyl group (C-O) decreased. Moreover, the contact angle decreased, while the surface free energy increased. On the other hand, when the dispersant CMC concentration was fixed at 0.4%, the optimal binder PVA content was found to be 3%. As the binder PVA content increased from 0% to 10%, the formation of hydrogen bonds between the CMC dispersant and the PVA binder led to an increase in C=O and O=C-O bonds, while C-O and NaOH decreased. As the amount of oxygen increased, the contact angle decreased and the surface free energy increased.

4.
Mar Environ Res ; 202: 106715, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232471

RESUMO

The Yellow Sea Warm Current (YSWC) constitutes a significant hydrological feature in the Yellow Sea, particularly prominent during winter, facilitating the transport of warm, saline waters and warm-water species from the open sea to the Bohai and Yellow Seas. The YSWC induces alterations in the community structure and function of zooplankton. However, the effects of the YSWC on the functional trait compositions and functional groups of zooplankton remain unclear. This study aimed to elucidate the influence of the YSWC on the community structure, functional trait composition, and functional groups of zooplankton during winter of 2016. The YSWC significantly impacted the zooplankton assemblage in the central Yellow Sea (CYSA), resulting in notable distinctions from the Shandong coastal assemblage (SCA) and Jiangsu coastal assemblage (JCA). Compared to the SCA and JCA (comprising 45 and 34 taxa, with abundances of 119.4 ± 114.6 ind·m-3 and 82.8 ± 62.1 ind·m-3, respectively), the CYSA exhibited higher species richness and abundance (with 51 taxa and 144.4 ± 103.4 ind·m-3, respectively). This study documented a total of 11 warm-water species, showing a decreasing trend in both species richness and abundance from south to north. The CYSA was characterized by the predominance of medium‒sized, current‒feeding, omnivorous‒herbivorous broadcast spawners, whereas the SCA and the JCA were predominantly dominated by giant‒sized, ambush‒feeding carnivores. The Qingdao-Shidao anticyclonic eddy in the southern of Shandong Province led to a significant increase in the abundance of zooplankton, potentially impacting Yellow Sea fishery resource. This research contributed to a deeper understanding of how YSWC influence the zooplankton community and offered fresh insights into the effects of YSWC on zooplankton function traits and functional groups.

5.
ACS Appl Mater Interfaces ; 16(37): 49293-49304, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39228118

RESUMO

The abundant defects on the perovskite surface greatly impact the efficiency improvement and long-term stability of carbon-based perovskite solar cells. Molecules with electron-donating or electron-withdrawing functional groups have been cited for passivating various defects. However, few studies have investigated the potential adverse effects arising from the synergistic interactions among functional groups. Herein, we investigate the correlation between functional group configurations and passivation strength as well as the potential adverse impacts of strong electrostatic structures by methodically designing three distinct interface molecules functionalized with different ending groups, which both belong to biguanide derivatives, including 1-(3,4-dichlorophenyl) biguanide hydrochloride (DBGCl), metformin hydrochloride (MFCl), and biguanide hydrochloride (BGCl). The results indicate that DBGCl establishes comparatively mild active sites, not only passivates defects but also aids in forming a surface with a uniform potential. Conversely, MFCl exerts a more pronounced adverse effect on the perovskite surface, which is attributable to the electronic state perturbations induced by its functional groups. Due to the lack of hydrophobic groups, devices treated with BGCl demonstrate insufficient moisture resistance. Devices passivated with DBGCl demonstrate superior average efficiency, showcasing a 12% enhancement relative to the pristine. Furthermore, DBGCl-treated devices exhibit enhanced stability in three different environments, respectively, achieving the highest PCE retention rates under nitrogen conditions (25 °C), room-temperature air conditions (25 °C, RH = 40 ± 2%), and high-temperature air conditions (65 °C, RH = 40 ± 2%).

6.
J Hazard Mater ; 479: 135733, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236541

RESUMO

Minimizing the detrimental impacts of perfluorooctanoic acid (PFOA) on human health is a daunting task. Here, we aimed to propose effective strategies for reducing PFOA-induced mitochondrial toxicity in human liver and intestinal cells. PFOA could occupy the fatty acid-binding pockets of human peroxisome proliferator-activated receptor alpha (hPPARα). PFOA not only could structurally interact with hPPARα, but also substantially upregulated the expression levels of PPARα and its downstream gene (i.e., pyruvate dehydrogenase kinase (PDK4)). The increased expression of PDK4 was associated with the mitochondrial toxicity of PFOA, and inhibition of PDK4 or knock-down of PDK4 could effectively attenuate the mitochondrial toxicity of PFOA. Moreover, modification of carboxyl group via an esterification of PFOA into methyl perfluorooctanoate (MePFOA) decreased the affinity to hPPARα, resulting in the loss of upregulated expressions of PPARα and PDK4. Lower mitochondrial toxicity and cytotoxicity were found in the MePFOA-treated cells compared to PFOA exposure. Our study supported that the carboxyl group of PFOA (as functional head group) was required for inducing its mitochondrial toxicity. Two strategies, including modification of functional head group and inhibition of toxic target of PFOA, are feasible to ameliorate mitochondrial toxicity of PFOA.


Assuntos
Caprilatos , Fluorocarbonos , Mitocôndrias , PPAR alfa , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Humanos , PPAR alfa/metabolismo , PPAR alfa/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Células Hep G2 , Linhagem Celular
7.
Carbohydr Res ; 545: 109255, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39236346

RESUMO

Currently, an important ecological problem is environmental pollution and its negative impact on living organisms, the consequences of which are deterioration in general health and the manifestation of various diseases, poisoning, endo- and exotoxicosis. Enterosorption method was proposed as a promising method for removing toxic substances from the living organisms using enterosorbents which can absorb various toxic substances of endogenous and exogenous nature in the lumen of the gastrointestinal tract. It has been proposed to use polymer-containing enterosorbents for eliminating of heavy metals from the organism. The purpose of this research was to synthesize a quaternized derivative of chitosan, specifically N-(2-hydroxybenzyl)-N-ethyl-N-methyl chitosan chloride (Q-CHS). The synthesis of Q-CHS involved the formation of a Schiff base, followed by the quaternization of the amino group of chitosan (CHS). The structures of both pure CHS and quaternized CHS were studied using various physico-chemical methods, including FTIR, NMR, XRD, SEM, DSC and TGA analyses in order to determine the structure and confirm the formation of the final product.

8.
Ecol Evol ; 14(9): e70217, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219569

RESUMO

The Yangtze River is one of the largest riverine ecosystems in the world and is a biodiversity hotspot. In recent years, this river ecosystem has undergone rapid habitat deterioration due to anthropogenic disturbances, leading to a decrease in freshwater biodiversity. Owing to these anthropogenic impacts, the Chinese government imposed a "Ten-year fishing ban" (TYFB) in the Yangtze River and its tributaries. Ecological changes associated with this decision have not been documented to evaluate the level of success. This study evaluates the success of the TYFB by analyzing the changes in phytoplankton communities and comparing them to periods before the TYFB was imposed. A total of 325 phytoplankton species belonging to 7 phyla and 103 genera dominated by Chlorophyceae and Bacillariophyceae were identified. Species diversity according to the Shannon-Wiener ranged between 1.19 and 3.00. The results indicated that phytoplankton diversity increased, while both density and biomass decreased after the TYFB. The health of the aquatic ecosystem appeared to have improved after the TYFB, as indicated by the phytoplankton-based index of biotic integrity. Significant seasonal and spatial differences were found among the number of species, density, and biomass of phytoplankton, where these differences were correlated with pH, water depth, chlorophyll-a, permanganate index, transparency, copper, ammonia nitrogen, and total phosphorus based on redundancy analysis. Results from this study indicate that the TYFB played an important role in the restoration of freshwater ecosystem in the Yangtze River and its tributaries.

9.
Sci Total Environ ; 951: 175445, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39134279

RESUMO

The temporal stability of grasslands plays a key role in the stable provisioning of multiple ecosystem goods and services for humankind. Despite recent progress, our knowledge on how long-term mowing influences ecosystem stability remains unclear. Using a dataset from an 18-year-long mowing experiment with different treatment intensities (no-mowing, mowing once per year, and mowing twice per year) in grasslands of Inner Mongolia, China, we aimed to determine whether and how long-term mowing influenced grassland temporal stability in a temperate steppe. We found mowing decreased ecosystem stability in the early and intermediate periods (1-12 years of treatment), but increased stability in the later period (13-18 years of treatment), indicating responses of ecosystem stability to long-term mowing were phase dependent. Bivariate correlation and structural equation modeling analyses revealed that the degree of asynchrony both at the species and functional group levels, as well as dominant species stability, played key roles in stabilizing the whole community. In addition, portfolio effects rather than diversity made significant contributions to ecosystem stability. Our results suggest the phase-dependent temporal stability of grassland under long-term mowing is mainly mediated by species and functional group asynchrony. This finding provides a new insight for understanding how dryland grassland responds to long-term anthropogenic perturbations.


Assuntos
Pradaria , China , Monitoramento Ambiental , Biodiversidade , Ecossistema
10.
Environ Manage ; 74(5): 870-885, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39210029

RESUMO

Anthropogenic and climatic changes are continuously altering the freshwater plankton, necessitating an evaluation of the complex structure of plankton communities to understand and mitigate these impacts. In this context, the present study focuses on evaluating the structure of plankton communities, specifically Phytoplankton Functional Groups (FGs) for assessing the environmental sensitivity of wetlands under changing scenario. These FGs are defined by shared adaptive features rather than taxonomic traits. Over the period from 2016 to 2018, two ecologically distinct wetlands were examined, analysing their phytoplankton FGs and their relationship with water quality parameters. Ecohydrological data revealed significant seasonal variations (p ≤ 0.05) in key parameters such as water depth, temperature, pH, electrical conductivity, dissolved oxygen, total alkalinity, total hardness, NO3-N, and PO4-P. Notably, there were no significant differences observed among the sampling stations within each wetland. A total of 125 phytoplankton genera/species were classified into 23 FGs in the open wetland and 22 FGs in the closed wetland. Spatial and seasonal analyses of dominant FGs suggested both wetlands were experiencing pollution pressures. This study highlights the powerful role of phytoplankton functional groups (FGs) as bioindicators of wetland health, uncovering pollution pressures. In open wetlands, 15 phytoplankton FGs with 36 key taxa (Indicator Value ≥ 40%) emerged as critical indicators, while in closed wetlands, only 10 FGs with 17 taxa were identified. To assess eutrophication, the occurrence of these indicator species was evaluated using BVSTEP function analysis. The study recommends pollution reduction in catchment areas and restoration of riverine connectivity to enhance FG diversity. Phytoplankton FG methodologies are deemed effective for assessing the environmental sensitivity of wetlands significantly impacted by human activities. This research offers a scientific foundation for the evaluation and restoration of wetland ecosystems.


Assuntos
Fitoplâncton , Áreas Alagadas , Monitoramento Ambiental/métodos , Qualidade da Água , Estações do Ano
11.
Chem Pharm Bull (Tokyo) ; 72(8): 772-774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39198182

RESUMO

We report chemoselective hydrogenation of α,ß-unsaturated anilides catalyzed by the palladium-polymethylhydrosiloxane (hydrosilane) system. Under this condition, C-C double bonds are selectively reduced while other reducible groups such as acetyl groups, nitro groups, nitriles, benzyl ethers, and halogens are largely tolerated. This chemoselective hydrogenation is promising for the development of efficient synthetic routes for multi-functional compounds.


Assuntos
Paládio , Hidrogenação , Paládio/química , Catálise , Estrutura Molecular , Silanos/química
12.
J Hazard Mater ; 479: 135606, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191016

RESUMO

The particulate matter and soluble organic fraction emitted by diesel engine are hazardous to environment and human health. Exploring the effect mechanism of soluble organic fraction on soot oxidation is beneficial for reducing the emissions. In this study, the effects of four different types of soluble organic fractions on the soot oxidation activity and physicochemical properties are investigated. The results show that the attachment of oxygen-containing soluble organic fractions enhances the soot oxidation and reduces the peak characteristic temperature. However, the low volatility soluble organic fractions without oxygen element inhibit soot oxidation. Additionally, the high volatility soluble organic fractions without oxygen element elicit limited effects on soot oxidation. the contents of aliphatic C-H functional groups, carbonyl CO functional groups, and carboxylic acid O-CO functional groups significantly increase after adding oxygen-containing soluble organic fractions, while the limited increase in functional groups is observed in soluble organic fractions without oxygen element. Solid soluble organic fractions adhere to soot particles in the form of small particles, leading a reduction in the initial particle size distribution, while liquid soluble organic fractions exhibit block and chain shapes around the soot particles, which makes the initial particle size distribution increasing. Moreover, the attachment of all soluble organic fractions disrupts the surface order of soot particle, leading to a decrease in soot graphitization. This study is beneficial for revealing the interaction mechanism between soot and soluble organic fractions.

13.
J Environ Manage ; 368: 122235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159574

RESUMO

Specific mechanisms of precipitation change due to global climate variability on plant communities in coastal salt marsh ecosystems remain unknown. Hence, a field manipulative precipitation experiment was established in 2014 and 5 years of field surveys of vegetation from 2017 to 2021 to explore the effects of precipitation changes on plant community composition. The results showed that changes in plant community composition were driven by dominant species, and that the dominance of key species changed significantly with precipitation gradient and time, and that these changes ultimately altered plant community traits (i.e., community density, height, and species richness). Community height increased but community density decreased with more precipitation averaged five years. Furthermore, changes in precipitation altered dominant species composition and functional groups mainly by influencing soil salinity. Salinity stress caused by decreased precipitation shifted species composition from a dominance of taller perennials and grasses to dwarf annuals and forbs, while the species richness decreased. Conversely, soil desalination caused by increased precipitation increased species richness, especially increasing in the dominance of grasses and perennials. Specifically, Apocynaceae became dominance from rare while Amaranthaceae decreased in response to increased precipitation, but Poaceae was always in a position of dominance. Meanwhile, the dominance of grasses and perennials has the cumulative effect of years and their proportion increased under the increased 60% of ambient precipitation throughout the years. However, the annual forb Suaeda glauca was gradually losing its dominance or even becoming extinct over years. Our study highlights that the differences in plant salinity tolerance are key to the effects of precipitation changes on plant communities in coastal salt marsh. These findings aim to provide a theoretical basis for predicting vegetation dynamics and developing ecological management strategies to adapt to future precipitation changes.


Assuntos
Salinidade , Solo , Áreas Alagadas , Solo/química , Ecossistema , Plantas , Biodiversidade , Chuva , Poaceae/crescimento & desenvolvimento
14.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124313

RESUMO

This study explores the effects of various temperatures on the surface modification of carbon fibers, as well as the effect of differing voltages and currents on the morphology, deposition rate, and thickness of the Ni plating layers. Post-treatment characterization of the samples was conducted utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods, thus facilitating a discussion on the mechanism of Ni plating. The findings demonstrate that at a temperature of 500 °C, the carbon fiber surface exhibits the highest concentration of functional groups, including hydroxyl (-OH), carboxyl (-COOH), and carbonyl (-C=O), resulting in the most efficacious modification. Specifically, exceeding 500 °C leads to significant carbon fiber mass loss, compromising the reinforcement effect. Under a stable voltage of 7.5 V, the Ni-plated layer on the carbon fibers appear smooth, fine, uniform, and complete. Conversely, at a voltage of 15 V, the instantaneous high voltage induces the continuous growth of Ni2+ ions along a singular deposition point, forming a spherical Ni-plated layer. In addition, a current of 0.6 A yields a comparatively uniform and dense carbon fiber coating. Nickel-plated layers on a carbon fiber surface with different morphologies have certain innovative significance for the structural design of composite reinforcements.

15.
Front Plant Sci ; 15: 1393471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086909

RESUMO

The phenomenon of nitrogen deposition resulting in species loss in terrestrial ecosystems has been demonstrated in several experiments. Nitrogen (N) and phosphorus (P), as major nutrients required for plant growth, exhibit ecological stoichiometric coupling in many ecosystems. The increased availability of nitrogen can exacerbate the ecological effects of phosphorus. To reveal the ecological effects of phosphorus under nitrogen-limiting and non-limiting conditions, we conducted a controlled N-P interaction experiment over 5 years in the Hulunbuir meadow steppe, where two nitrogen addition levels were implemented: 0 g N·m-2·a-1 (nitrogen-limiting condition) and 10 g N·m-2·a-1 (nitrogen-non-limiting condition), together with six levels of phosphorus addition (0, 2, 4, 6, 8, and 10 g P·m-2·a-1). The results showed that nitrogen addition (under nitrogen-non-limiting conditions) significantly decreased species diversity in the steppe community, which was exacerbated under phosphorus addition. Under nitrogen-limiting conditions, phosphorus addition had no marked impact on species diversity compared to the control; however, there were substantial differences between different levels of phosphorus addition, exhibiting a unimodal change. Under both experimental nitrogen conditions, the addition of 6 g P·m-2·a-1 was the threshold for affecting the community species diversity. Nitrogen addition reduced the relative biomass of legumes, bunch grasses, and forbs, but substantially increased the relative biomass of rhizomatous grasses. In contrast, phosphorus addition only markedly affected the relative biomass of forbs and rhizomatous grasses, with the former showing a unimodal pattern of first increasing and then decreasing with increasing phosphorus addition level, and the latter exhibiting the opposite pattern. The different responses of rhizomatous grasses and other functional groups to nitrogen and phosphorus addition were observed to have a regulatory effect on the changes in grassland community structure. Phosphorus addition may increase the risk of nitrogen deposition-induced species loss. Both nitrogen and phosphorus addition lead to soil acidification and an increase in the dominance of the already-dominant species, and the consequent species loss in the forb functional group represents the main mechanism for the reduction in community species diversity.

16.
Front Microbiol ; 15: 1435078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091299

RESUMO

Phytoplankton functional groups have been increasingly utilized in elucidating and predicting the response of phytoplankton species to environmental conditions and seasonal succession in various aquatic systems including lakes, rivers and reservoirs. However, it is still unclear whether the trait-based functional classification can be applied to spring-type lakes. To understand the temporal and spatial characteristics of phytoplankton functional groups and their responses to environmental factors in spring-type urban lake in northern China, an investigation was conducted in Daming Lake from May 2020 to September 2021. The findings revealed the identification of 98 phytoplankton taxa belonging to 6 phyla, predominantly being Chlorophyta (39.8%), Bacillariophyta (35.7%) and Cyanophyta (15.3%). The dominant species were Microcystis sp., Merismopedia minima, Synedra acus and Scenedesmus quadricauda. These phytoplankton taxa were categorized into 21 functional groups, with 6 dominant functional groups (abbreviated as D, MP, P, J, Lo, and W1). Among them, the functional group D, primarily constituted by S. acus, exhibited absolute predominance. The seasonal succession sequence of the dominant functional groups was as follows: D/P/J/MP/ Lo →→ D/P/W1/MP/Lo/J → D/P/J → D/MP → D/P/MP. Throughout the investigation period, the trophic level index (TLI) ranged from 39.10 to 71.13, and the Q index was from 1.91 to 2.91, both indicating a medium health state for Daming Lake, which was consistent with the evaluation results of the diversity index. The results of redundancy analysis revealed that the main driving factors of phytoplankton FG biomass and composition were water temperature (WT), total nitrogen (TN), transparency (SD), TN:TP (N:P), redox potential (ORP), chemical oxygen demand (CODMn) and pH. The dominance of the functional group D positively correlated with water temperature, TN, CODMn, pH and N:P but negatively correlated with SD. It was observed that functional groups and the Q index can objectively indicate the seasonal succession of phytoplankton and the water quality status of Daming Lake. Our discoveries have significant implications for the comprehension of the effects of urbanization on phytoplankton dynamics and for enhancing lake management practices to foster sustainable urban development.

17.
Chemistry ; : e202402607, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215487

RESUMO

Functional group interconversion is of great significance in organic synthesis. However, aerobic cleavage of C=N bonds to access carbonyl compounds still suffered from some limitations such as harsh reaction conditions, stoichiometric oxidants, poor substrate scope and use of toxic reagents. Herein, we report a catalyst-free and photo-induced aerobic cleavage of C=N bonds to afford diverse carbonyl compounds using oxygen from air as green oxidant. This mild methodology permits N-tosylhydrazones converted into the corresponding carbonyl compounds including ketones, amides, aldehydes and carboxylic acids, showing broad functional group tolerance and compatibility. Moreover, the gram-scale reaction and post-modification of complicated molecules proved the applicability and efficiency of this strategy. Finally, a plausible mechanism was proposed based on spectroscopic investigations and detailed mechanistic studies.

18.
Molecules ; 29(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39202915

RESUMO

Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min-1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.

19.
Microorganisms ; 12(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39203389

RESUMO

Exploring the response of the diversity of phytoplankton species and functional groups to environmental variables is extremely important in maintaining biodiversity in aquatic ecosystems. Although there were more taxonomic units at the species level than at the functional group level, it remained unclear whether species diversity was more sensitive than functional group diversity to environmental variables. In this study, taxonomic composition and alpha-beta diversity of phytoplankton were investigated in 23 subtropical reservoirs located in the Han River Basin in South China during wet and dry seasons. Structural Equation Modelling (SEM) and Generalized Dissimilarity Modelling (GDM) were employed to validate the response of phytoplankton species and functional group alpha-beta diversities to environmental variables. The results indicated that the community compositions of phytoplankton in eutrophic reservoirs were similar between wet and dry seasons, while there were distinct differences for community composition in oligotrophic-mesotrophic reservoirs between the two seasons. Across all reservoirs, there were no significant differences in alpha and beta diversities of species and functional groups between wet and dry seasons. The SEM and GDM results revealed that total phosphorus was the primary driving factor influencing alpha and beta diversities of species and functional groups in the 23 reservoirs. Meanwhile, the non-linear results of species beta diversity were stronger than the non-linear results of functional group beta diversity, indicating that phytoplankton species exhibited a higher explanatory power in responding to environmental changes compared to that of functional groups. Compared to that of species beta diversity, the response of functional group beta diversity to environmental variables was significantly lower in the dry season. These research findings lead to re-evaluating the common practice relating to the use of phytoplankton functional groups to assess environmental conditions, which may overlook the explanatory power of subtle changes at the species level, especially during periods of habitat diversification in the dry season.

20.
Environ Pollut ; 359: 124758, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154881

RESUMO

Due to the extensive use of plastic products and unreasonable disposal, nanoplastics contamination has become one of the important environmental problems that mankind must face. The composition and structure of porous media can determine the complexity and diversity of the transport behavior of nanoplastics. In this study, the influence of diatomite (DIA) on the nanoplastics transport in porous media is investigated by column experiments combined with XDLVO interaction energy and transport model. Results suggest that the recovery rates of unmodified polystyrene nanoparticles (PSNPs) and carboxyl-modified polystyrene nanoparticles (PSNPs-COOH) in the porous media containing DIA decreases compared with that in the pure quartz sand (QS), and the BTCs showed a "blocking" pattern. The presence of DIA inhibits the transport of both PSNPs and PSNPs-COOH, but the inhibition is not significant. This may be because the presence of DIA provides more favorable deposition sites for PSNPs and PSNPs-COOH to some extent. However, since DIA itself carries a certain negative charge, this can only play a role in compressing the double electric layer for PSNPs and PSNPs-COOH with the same negative charge, and cannot destabilize them. The migration capacity of PSNPs and PSNPs-COOH is strongest in the DIA-QS porous media at pH = 7, and is weak at pH = 9 and pH = 5. The inhibition of migration at pH = 9 can be attributed to the dissolution of the DIA surface under alkaline conditions and the formation of pore and defect structures, which provide more deposition sites for PSNPs and PSNPs-COOH. The presence of humic acid (HA) leads to an increase in the mobility of PSNPs and PSNPs-COOH, and the mobility is enhanced with HA concentration. The mobility of PSNPs and PSNPs-COOH in DIA-QS decreases with ionic valence and ionic strength, and PSNPs-COOH is more significantly inhibited compared to PSNPs.


Assuntos
Nanopartículas , Poliestirenos , Porosidade , Nanopartículas/química , Poliestirenos/química , Terra de Diatomáceas/química , Microplásticos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA