Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
FEBS J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923676

RESUMO

Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.

2.
Adv Sci (Weinh) ; : e2404822, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924471

RESUMO

Small extracellular vesicles (sEVs) contain abundant circular RNAs (circRNAs) and are involved in cellular processes, particularly hypoxia. However, the process that packaging of circRNAs into neuronal sEVs under hypoxia is unclear. This study revealed the spatial mechanism of the Fused in Sarcoma protein (FUS) that facilitates the loading of functional circRNAs into sEVs in hypoxia neurons. It is found that FUS translocated from the nucleus to the cytoplasm and is more enriched in hypoxic neuronal sEVs than in normal sEVs. Cytoplasmic FUS formed aggregates with the sEVs marker protein CD63 in cytoplasmic stress granules (SGs) under hypoxic stress. Meanwhile, cytoplasmic FUS recruited of functional cytoplasmic circRNAs to SGs. Upon relief of hypoxic stress and degradation of SGs, cytoplasmic FUS is transported with those circRNAs from SGs to sEVs. Validation of FUS knockout dramatically reduced the recruitment of circRNAs from SGs and led to low circRNA loading in sEVs, which is also confirmed by the accumulation of circRNAs in the cytoplasm. Furthermore, it is showed that the FUS Zf_RanBP domain regulates the transport of circRNAs to sEVs by interacting with hypoxic circRNAs in SGs. Overall, these findings have revealed a FUS-mediated transport mechanism of hypoxia-related cytoplasmic circRNAs loaded into sEVs under hypoxic conditions.

3.
Hum Reprod ; 39(8): 1628-1644, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885964

RESUMO

STUDY QUESTION: Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER: Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY: Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION: Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS: Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE: Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION: Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS: Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Metais Pesados , RNA Circular , Análise do Sêmen , Espermatozoides , Masculino , Humanos , Itália , Adulto , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , RNA Circular/genética , RNA Circular/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Motilidade dos Espermatozoides/efeitos dos fármacos
4.
Dev Cell ; 59(16): 2134-2142.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38878774

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Fibroblastos , Proteína FUS de Ligação a RNA , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Mutação/genética , Masculino , Feminino , Pele/patologia , Pele/metabolismo , Aprendizado de Máquina , Pessoa de Meia-Idade
5.
Front Cell Neurosci ; 18: 1364164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711616

RESUMO

Introduction: Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods: The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results: Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion: iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.

6.
Theriogenology ; 218: 111-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320372

RESUMO

Genetically modified pigs play a critical role in mimicking human diseases, xenotransplantation, and the development of pigs resistant to viral diseases. The use of programmable endonucleases, including the CRISPR/Cas9 system, has revolutionized the generation of genetically modified pigs. This study evaluates the efficiency of electroporation of oocytes prior to fertilization in generating edited gene embryos for different models. For single gene editing, phospholipase C zeta (PLC ζ) and fused in sarcoma (FUS) genes were used, and the concentration of sgRNA and Cas9 complexes was optimized. The results showed that increasing the concentration resulted in higher mutation rates without affecting the blastocyst rate. Electroporation produced double knockouts for the TPC1/TPC2 genes with high efficiency (79 %). In addition, resistance to viral diseases such as PRRS and swine influenza was achieved by electroporation, allowing the generation of double knockout embryo pigs (63 %). The study also demonstrated the potential for multiple gene editing in a single step using electroporation, which is relevant for xenotransplantation. The technique resulted in the simultaneous mutation of 5 genes (GGTA1, B4GALNT2, pseudo B4GALNT2, CMAH and GHR). Overall, electroporation proved to be an efficient and versatile method to generate genetically modified embryonic pigs, offering significant advances in biomedical and agricultural research, xenotransplantation, and disease resistance. Electroporation led to the processing of numerous oocytes in a single session using less expensive equipment. We confirmed the generation of gene-edited porcine embryos for single, double, or quintuple genes simultaneously without altering embryo development to the blastocyst stage. The results provide valuable insights into the optimization of gene editing protocols for different models, opening new avenues for research and applications in this field.


Assuntos
Doenças dos Suínos , Viroses , Humanos , Animais , Suínos/genética , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/veterinária , Edição de Genes/métodos , Fertilização in vitro/veterinária , Oócitos , Eletroporação/veterinária , Eletroporação/métodos , Viroses/veterinária , Doenças dos Suínos/genética
7.
Stem Cell Reports ; 19(2): 187-195, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38242131

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft. Consequently, FUS-ALS neurons showed greater vulnerability to glutamate excitotoxicity, which raised neuronal swellings (varicose neurites) and led to neuronal death. Fragile X mental retardation protein (FMRP) is an RNA-binding protein known to regulate synaptic protein translation, and its expression is reduced in the FUS-ALS lines. Collectively, our data suggest that a reduction of FMRP levels alters the synaptic protein dynamics, leading to synaptic dysfunction and glutamate excitotoxicity. Here, we present a mechanistic hypothesis linking dysregulation of peripheral translation with synaptic vulnerability in the pathogenesis of FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Glutamatos/metabolismo , Proteína FUS de Ligação a RNA/genética
8.
Acta Neuropathol Commun ; 11(1): 182, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974279

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Idoso , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Demência Frontotemporal/patologia , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , NF-kappa B/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
9.
Cells ; 12(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887305

RESUMO

Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
10.
J Biol Chem ; 299(12): 105392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890778

RESUMO

Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.


Assuntos
Motivo de Reconhecimento de RNA , RNA , Domínios Proteicos , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos
11.
J Biol Chem ; 299(10): 105237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690693

RESUMO

The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.


Assuntos
DNA , Estruturas R-Loop , Proteína FUS de Ligação a RNA , RNA , DNA/metabolismo , Estruturas R-Loop/genética , RNA/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Ligação Proteica , Humanos , RNA Polimerases Dirigidas por DNA/metabolismo , Células HEK293
12.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37767237

RESUMO

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

13.
Res Sq ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461717

RESUMO

Fused-in Sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered expression profiles of mRNAs and lncRNAs in iPSCs. We identified key differentially regulated TAR pairs, including LMO3, TMEM132D, ERMN, GPR149, CRACD, and ZNF404 in mutant FUS iPSCs. We performed reverse transcription PCR (RT-PCR) validation in iPSCs and iMNs. Validation confirmed RNA-Seq findings and suggested that mutant FUS-induced transcriptional alterations persisted from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis that were likely altered by FUS mutations. Ingenuity Pathway Analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations related to RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into the molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.

14.
BMC Neurol ; 23(1): 185, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158824

RESUMO

BACKGROUND: IL-13Rα2 is one of the most widely studied tumor-associated antigens in glioma research. Fused in sarcoma (FUS) is a DNA/RNA binding protein that is dysfunctional in various malignant tumors. However, the expression of IL-13Rα2 and FUS, their relationship with clinicopathological parameters and their prognostic value in glioma remain unclear. METHODS: In the present study, the expression of IL-13Rα2 and FUS was measured in a glioma tissue array by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman's correlation test was used to determine the association between these two proteins expression. The Kaplan-Meier analysis was used to investigate the effect of these proteins on prognosis. RESULTS: The expressions of IL-13Rα2 were significantly higher in high-grade gliomas (HGG) than that in low-grade gliomas (LGG) and was associated with IDH mutation status, whereas FUS location demonstrated no significant correlation with clinicopathological parameters. Moreover, a positive relationship was found between nuclear and cytoplasmic co-localization FUS and IL-13Rα2 expression. Kaplan-Meier analysis revealed that patients with IDH wide type or IL-13Rα2 had worst overall survival (OS) compared to other biomarkers. In HGG, IL-13Rα2 combined with nuclear and cytoplasmic co-localization of FUS was associated with worse OS. Multivariate analysis showed that tumor grade, Ki-67, P53 and IL-13Rα2 could be the independent prognostic factors for OS. CONCLUSION: IL-13Rα2 expression was significantly associated with cytoplasmic distribution of FUS in human glioma samples and could be the independent prognostic factors for OS, while the prognostic value of its co-expression with cytoplasmic FUS in glioma need to be addressed in the future studies.


Assuntos
Glioma , Humanos , Prognóstico , Estimativa de Kaplan-Meier , Análise Multivariada , Proteína FUS de Ligação a RNA/genética
15.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833445

RESUMO

High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Sarcoma , Humanos , Agregados Proteicos , Esclerose Lateral Amiotrófica/genética , RNA de Transferência de Serina , RNA de Transferência
16.
Adv Sci (Weinh) ; 10(10): e2204988, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806670

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is suggested to be associated with hypoxia. This study is the first to identify a novel circular RNA (circRNA), circTBC1D14, whose expression is significantly upregulated in TNBC. The authors confirm that high circTBC1D14 expression is associated with a poor prognosis in patients with breast cancer. circTBC1D14-associated mass spectrometry and RNA-binding protein-related bioinformatics strategies indicate that FUS can interact with circTBC1D14, which can bind to the downstream flanking sequence of circTBC1D14 to induce cyclization. FUS is an essential biomarker associated with stress granules (SGs), and the authors find that hypoxic conditions can induce FUS-circTBC1D14-associated SG formation in the cytoplasm after modification by protein PRMT1. Subsequently, circTBC1D14 increases the stability of PRMT1 by inhibiting its K48-regulated polyubiquitination, leading to the upregulation of PRMT1 expression. In addition, FUS-circTBC1D14 SGs can initiate a cascade of SG-linked proteins to recognize and control the elimination of SGs by recruiting LAMP1 and enhancing lysosome-associated autophagy flux, thus contributing to the maintenance of cellular homeostasis and promoting tumor progression in TNBC. Overall, these findings reveal that circTBC1D14 is a potential prognostic indicator that can serve as a therapeutic target for TNBC treatment.


Assuntos
Esclerose Lateral Amiotrófica , Neoplasias de Mama Triplo Negativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Grânulos de Estresse , Fatores de Transcrição/metabolismo , Autofagia/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína FUS de Ligação a RNA/química
17.
J Mol Biol ; 435(6): 167972, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690069

RESUMO

Deficient nucleocytoplasmic transport is emerging as a pathogenic feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), including in ALS caused by mutations in Fused in Sarcoma (FUS). Recently, both wild-type and ALS-linked mutant FUS were shown to directly interact with the phenylalanine-glycine (FG)-rich nucleoporin 62 (Nup62) protein, where FUS WT/ Nup62 interactions were enriched within the nucleus but ALS-linked mutant FUS/ Nup62 interactions were enriched within the cytoplasm of cells. Nup62 is a central channel Nup that has a prominent role in forming the selectivity filter within the nuclear pore complex and in regulating effective nucleocytoplasmic transport. Under conditions where FUS phase separates into liquid droplets in vitro, the addition of Nup62 caused the synergistic formation of amorphous assemblies containing both FUS and Nup62. Here, we examined the molecular determinants of this process using recombinant FUS and Nup62 proteins and biochemical approaches. We demonstrate that the structured C-terminal domain of Nup62 containing an alpha-helical coiled-coil region plays a dominant role in binding FUS and is sufficient for inducing the formation of FUS/Nup62 amorphous assemblies. In contrast, the natively unstructured, F/G repeat-rich N-terminal domain of Nup62 modestly contributed to FUS/Nup62 phase separation behavior. Expression of individual Nup62 domain constructs in human cells confirmed that the Nup62 C-terminal domain is essential for localization of the protein to the nuclear envelope. Our results raise the possibility that interactions between FUS and the C-terminal domain of Nup62 can influence the function of Nup62 under physiological and/or pathological conditions.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Glicoproteínas de Membrana , Complexo de Proteínas Formadoras de Poros Nucleares , Domínios e Motivos de Interação entre Proteínas , Proteína FUS de Ligação a RNA , Humanos , Transporte Ativo do Núcleo Celular/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Citoplasma/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Mutação , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Glicoproteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
18.
J Neurosci ; 43(7): 1267-1278, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36627209

RESUMO

Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Sarcoma , Feminino , Ratos , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Hiperalgesia/metabolismo , Nociceptividade , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Sarcoma/complicações , Sarcoma/metabolismo , DNA/metabolismo , Gânglios Espinais/metabolismo
19.
J Neuropathol Exp Neurol ; 82(3): 231-241, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36592411

RESUMO

Fused in sarcoma (FUS), coded by FUS, is a heterogeneous nuclear ribonucleoprotein (hnRNP). FUS mutations are among the major mutations in familial amyotrophic lateral sclerosis (ALS-FUS: ALS6). The pathological hallmarks of ALS-FUS are FUS-positive neuronal cytoplasmic inclusions (NCI). We examined various hnRNPs in FUS NCIs in the hippocampus in ALS-FUS cases with different FUS mutations (Case 1, H517P; Case 2, R521C). We also examined TDP43-positive NCIs in sporadic ALS hippocampi. Immunohistochemistry was performed using primary antibodies against FUS, p-TDP43, TDP43, hnRNPA1, hnRNPD, PCBP1, PCBP2, and p62. Numerous FUS inclusions were found in the hippocampal granule and pyramidal cell layers. Double immunofluorescence revealed colocalization of FUS and p-TDP43, and FUS and PCBP2 (p-TDP43/FUS: 64.3%, PCBP2/FUS: 23.9%). Colocalization of FUS and PCBP1, however, was rare (PCBP1/FUS: 7.6%). In the hippocampi of patients with sporadic ALS, no colocalization was observed between TDP43-positive inclusions and other hnRNPs. This is the first study to show that FUS inclusions colocalize with other hnRNPs, such as TDP43, PCBP2, and PCBP1. These findings suggest that in ALS-FUS, FUS inclusions are the initiators, followed by alterations of multiple other hnRNPs, resulting in impaired RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Humanos , Esclerose Lateral Amiotrófica/patologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Corpos de Inclusão/patologia , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
PET Clin ; 18(1): 123-133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442960

RESUMO

Brain PET adds value in diagnosing neurodegenerative disorders, especially frontotemporal dementia (FTD) due to its syndromic presentation that overlaps with a variety of other neurodegenerative and psychiatric disorders. 18F-FDG-PET has improved sensitivity and specificity compared with structural MR imaging, with optimal diagnostic results achieved when both techniques are utilized. PET demonstrates superior sensitivity compared with SPECT for FTD diagnosis that is primarily a supplement to other imaging and clinical evaluations. Tau-PET and amyloid-PET primary use in FTD diagnosis is differentiation from Alzheimer disease, although these methods are limited mainly to research settings.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA