Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Infect Drug Resist ; 17: 1979-1986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800580

RESUMO

Purpose: The present study was designed to investigate the resistance determinants and virulence factors of 45 Trueperella pyogenes isolates from clinical bovine mastitis in Hexi Corridor of Gansu, China. Methods: Minimum inhibitory concentrations (MICs) was tested by E-test method. Gene of antimicrobial resistance, virulence integrase and integron gene cassettes were determined by PCR and DNA sequencing. Results: The T. pyogenes isolates exhibited high resistance to streptomycin (88.9%) and tetracycline (64.4%), followed by erythromycin (15.6%) and gentamicin (13.3%). Resistance to streptomycin was most commonly encoded by aadA9 (88.9%); and to tetracycline, by tetW (64.4%). Importantly, all streptomycin-resistant isolates carried aadA9 alone or in combination with aadA1, aadA11 and strA-strB. Similarly, all tetracycline-resistant isolates harbored tetW alone or in combination with tetA33. Meanwhile, ermX was detected in 13.3% isolates, only one erythromycin-resistant isolate was not identified for this gene. Moreover, all T. pyogenes isolates carried class 1 integrons, and 17.8% of them contained gene cassettes, including arrays aadA1-aadB (4.4%), aad A24-dfrA1-ORF1 (2.2%) and aadA1 (2.2%). Furthermore, all tested isolates harbored virulent genes plo and fimA, followed by fimC (88.9%), fimE (86.6%) nanP (75.6%), nanH (40.0%), cbpA (35.6%) and fimG (6.7%). Conclusion: To our knowledge, this is the first report of integron gene cassettes of T. pyogenes isolates from bovine mastitis cases in China. These findings are useful for developing the prevention and the virulence factors of T. pyogenes could be promising candidates for vaccine antigens for bovine mastitis caused by T. pyogenes in China.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38103122

RESUMO

Gene knockout is a widely used technique for engineering bacterial genomes, investigating the roles of genes in metabolism, and conferring biological characteristics. Herein, we developed a rapid, efficient, and simple method for the knockout of long gene cassettes in Pseudomonas spp., based on a traditional allelic exchange strategy. The upstream and downstream sequences of the target gene cluster to be deleted were amplified using primers with 5'-end sequences identical to the multiple cloning sites of a suicide plasmid (mutant allele insert vector). The sequences were then fused with the linearized suicide plasmid in one step via seamless cloning. The resulting allelic exchange vector (recombinant plasmid) was introduced from the donor strain (Escherichia coli SM 10) into recipient cells (Pseudomonas putida, P. composti, and P. khazarica) via conjugation. Single-crossover merodiploids (integrates the vector into host chromosome by homologous recombination) were screened based on antibiotic resistance conferred by the plasmid, and double-crossover haploids (deleting the target gene clusters and inserted alien plasmid backbone) were selected using sucrose-mediated counterselection. Unlike other approaches, the method described herein introduces no selective marker genes into the genomes of the knockout mutants. Using our method, we successfully deleted polysaccharide-encoding gene clusters in P. putida, P. composti, and P. khazarica and generated four mutants with single-gene cassette deletions up to 18 kbp and one mutant with double-gene cassette deletion of approximately 34 kbp. Collectively, our results indicate that this method is ideal for the deletion of long genetic sequences, yielding seamless mutants of various Pseudomonas spp.

3.
Antibiotics (Basel) ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760663

RESUMO

Antibiotic-resistance gene elements (ARGEs) such as antibiotic-resistance genes (ARGs), integrons, and plasmids are key to the spread of antimicrobial resistance (AMR) in marine environments. Kuwait's marine area is vulnerable to sewage contaminants introduced by numerous storm outlets and indiscriminate waste disposal near recreational beaches. Therefore, it has become a significant public health issue and warrants immediate investigation. Coliforms, especially Gram-negative Escherichia coli, have been regarded as significant indicators of recent fecal pollution and carriers of ARGEs. In this study, we applied a genome-based approach to identify ARGs' prevalence in E. coli isolated from mollusks and coastal water samples collected in a previous study. In addition, we investigated the plasmids and intl1 (class 1 integron) genes coupled with the ARGs, mediating their spread within the Kuwait marine area. Whole-genome sequencing (WGS) identified genes resistant to the drug classes of beta-lactams (blaCMY-150, blaCMY-42, blaCTX-M-15, blaDHA-1, blaMIR-1, blaOKP-B-15, blaOXA-1, blaOXA-48, blaTEM-1B, blaTEM-35), trimethoprim (dfrA14, dfrA15, dfrA16, dfrA1, dfrA5, dfrA7), fluroquinolone (oqxA, oqxB, qnrB38, qnrB4, qnrS1), aminoglycoside (aadA2, ant(3'')-Ia, aph(3'')-Ib, aph(3')-Ia, aph(6)-Id), fosfomycin (fosA7, fosA_6, fosA, fosB1), sulfonamide (sul1, sul2, sul3), tetracycline (tet-A, tet-B), and macrolide (mph-A). The MFS-type drug efflux gene mdf-A is also quite common in E. coli isolates (80%). The plasmid ColRNAI was also found to be prevalent in E. coli. The integron gene intI1 and gene cassettes (GC) were reported to be in 36% and 33%, respectively, of total E. coli isolates. A positive and significant (p < 0.001) correlation was observed between phenotypic AMR-intl1 (r = 0.311) and phenotypic AMR-GC (r = 0.188). These findings are useful for the surveillance of horizontal gene transfer of AMR in the marine environments of Kuwait.

4.
Mutat Res ; 827: 111836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37625357

RESUMO

We investigated the role(s) of the damage-inducible SOS response dinB and imuBC gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, Pseudomonas aeruginosa. We found that the overall numbers of ciprofloxacin resistant (CipR) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective dinB gene, but could be elevated to levels approaching wild-type when these cells were supplied with the dinB gene on a plasmid vector; in turn, firmly establishing a role for the dinB gene product, error-prone DNA polymerase IV, in the generation of CipR mutations in P. aeruginosa. Further, we report that products of the SOS-regulated imuABC gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating CipR mutations in this organism, since the yields of CipR mutations were substantially decreased in imuB- or imuC-defective cells compared to wild-type. Intriguingly, we found that the mutability of a dinB-defective strain could not be rescued by overexpression of the imuBC genes. And similarly, overexpression of the dinB gene either only modestly or else failed to restore CipR mutations in imuB- or imuC-defective cells, respectively. Combined, these results indicated that the products of the dinB and imuBC genes were acting in the same pathway leading to the generation of CipR mutations in P. aeruginosa. In addition, we provide evidence indicating that the general stress response sigma factor σs, RpoS, is required for mutagenesis in this organism and is in part at least modulating the dinB (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in P. aeruginosa.


Assuntos
DNA Polimerase beta , Humanos , DNA Polimerase beta/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Dano ao DNA , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Gene ; 884: 147696, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37549857

RESUMO

The prevalence assessment of integrons among multidrug-resistant strains of Pseudomonas aeruginosa receives much-needed attention from this study, as we achieved our desired objective by conducting a thorough analysis on one hundred swabs obtained from burn and clinical cases at the hospitals present in Al Muthanna governorate during November of the year 2021 through to March of the year 2022. By implementing various methodologies encompassing the scrutiny of growth traits and cellular composition as well as executing biochemical assays, a total of 55 isolates were determined to exhibit the existence of P. aeruginosa. When cultured in Hifluoro agar media, Pseudomonas aeruginosa produced diverse hues; particularly noticeable was its blue-green colour. It was discovered through investigation that there were no intI2 and inti3 genes present in those isolated. Findings from this research disclosed that about one-fifth, or precisely twelve out of fifty-five P. aeruginosa strains screened, had an actively expressed Integrase I gene. The association between elevated rates of resistance to multiple antimicrobial agents and the existence of integrons is worth mentioning. Furthermore, the assemblage of isolates that were efficacious in the presence of integrons demonstrated an augmented resistance towards several frequently employed antibiotics like rifampicin and ceftazidime. In conclusion, it can be stated with confidence that a considerable occurrence of integrons can be observed in Pseudomonas aeruginosa strains that display resistance to numerous pharmaceutical agents. Additionally, the discovery of the intI1 gene in a considerable proportion of isolates underscores the effectiveness of integrons in conferring resistance to a variety of antimicrobial agents. These revelations supplement our insight into antibiotic-resistant mechanisms while also underscoring the necessity for viable strategies aimed at halting and preventing bacterial drug resistance.


Assuntos
Unidades de Queimados , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Fluxo Gênico , Iraque , Antibacterianos/farmacologia , Hospitais , Integrons/genética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética
6.
Front Microbiol ; 14: 1112941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007502

RESUMO

Aeromonas veronii is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen that causes diarrhea in humans and hemorrhagic septicemia in fish. In the present study, we used whole-genome sequencing (WGS) to evaluate the presence of antimicrobial resistance (AMR) and virulence genes found in A. veronii Ah5S-24 isolated from catfish pond sediments in South-East, United States. We found cphA4, dfrA3, mcr-7.1, valF, bla FOX-7, and bla OXA-12 resistance genes encoded in the chromosome of A. veronii Ah5S-24. We also found the tetracycline tet(E) and tetR genes placed next to the IS5/IS1182 transposase, integrase, and hypothetical proteins that formed as a genetic structure or transposon designated as IS5/IS1182/hp/tet(E)/tetR/hp. BLAST analysis showed that a similar mobile gene cassette (MGC) existed in chromosomes of other bacteria species such as Vibrio parahaemolyticus isolated from retail fish at markets, Aeromonas caviae from human stool and Aeromonas media from a sewage bioreactor. In addition, the IS5/IS1182/hp/tet(E)/tetR/hp cassette was also found in the plasmid of Vibrio alginolyticus isolated from shrimp. As for virulence genes, we found the tap type IV pili (tapA and tapY), polar flagellae (flgA and flgN), lateral flagellae (ifgA and IfgL), and fimbriae (pefC and pefD) genes responsible for motility and adherence. We also found the hemolysin genes (hylII, hylA, and TSH), aerA toxin, biofilm formation, and quorum sensing (LuxS, mshA, and mshQ) genes. However, there were no MGCs encoding virulence genes found in A. veronii AhS5-24. Thus, our findings show that MGCs could play a vital role in the spread of AMR genes between chromosomes and plasmids among bacteria in aquatic environments. Overall, our findings are suggesting that MGCs encoding AMR genes could play a vital role in the spread of resistance acquired from high usage of antimicrobials in aquaculture to animals and humans.

7.
Braz J Microbiol ; 54(2): 645-653, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808308

RESUMO

Integron can capture and express antimicrobial resistance gene cassettes and plays important roles in horizontal gene transfer. The establishment of a complete in vitro reaction system will help to reveal integron integrase mediated site-specific recombination process and regulation mechanism. As an enzymatic reaction, the concentration of integrase is assumed to have a great influence on the reaction rate. To determine the influence of different concentrations of integrase on the reaction rate and to find the best range of enzyme concentration were essential to optimizing the in vitro reaction system. In this study, plasmids with gradient transcription levels of class 2 integron integrase gene intI2 under different promoters were constructed. Among plasmids pI2W16, pINTI2N, pI2W, and pI2NW, intI2 transcription levels ranged from about 0.61-fold to 49.65-fold of that in pINTI2N. And the frequencies of gene cassette sat2 integration and excision catalyzed by IntI2 were positively correlated with the transcription levels of intI2 within this range. Western blotting results indicated high expression of IntI2 partly existed in the form of an inclusion body. When compared with Pc of class 1 integron, the spacer sequence of PintI2 can increase the strength of PcW but decrease the strength of PcS. In conclusion, the frequencies of gene cassette integration and excision were positively correlated with the concentration of IntI2. intI2 driving by PcW with PintI2 spacer sequence can obtain the optimum IntI2 concentration required to achieve the maximum recombination efficiency in vivo in this study.


Assuntos
Integrases , Integrons , Integrons/genética , Integrases/genética , Integrases/metabolismo , Mutagênese Insercional , Regiões Promotoras Genéticas , Plasmídeos/genética
8.
Front Microbiol ; 14: 1091391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744093

RESUMO

Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.

9.
Heliyon ; 8(11): e11844, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36451751

RESUMO

Integrons can capture and express foreign gene cassettes through site-specific recombination and are important genetic elements in spreading antibiotic resistance genes among bacteria. We have developed a two-dimensional PCR technology (2D-PCR) based on the base quenching probe technology in detecting three major integrons at the same time. The minimum detection limits were evaluated by detecting three plasmids each harboring different types of integron with different concentrations. The specificity of this method was evaluated by screening and typing three major types of integrons in 105 clinical Proteus isolates, and the results were compared with those of traditional PCR. Results indicated that the melting temperature (Tm) difference of the three genes was about 10 °C and was very easy to be distinguished. The minimum detection limits of intI1, intI2 and intI3 were all below 102 copies/µl. The detection results of clinical isolates were consistent with those of traditional PCR. This developed rapid, economic and high-throughput 2D-PCR based method can detect three main classes of integron at the same reaction, and can be applied to clinical isolates in large-scale integron screening and typing.

10.
Bioresour Technol ; 364: 128005, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155808

RESUMO

Revealing class 1 integron characteristics under different operating conditions is of great importance to control antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD). This study investigated the variations of class 1 integrons and the ARGs carried by class 1 integrons in anaerobic sludge digesters under 25 °C, 35 °C, and 55 °C. The results showed lower intI1 abundance and fewer class I integrons with long gene cassette arrays at 55 °C than at 25 °C and 35 °C. Multi-resistance gene cassette arrays were observed in the digesters at 25 °C and 35 °C. Abundant ARGs were detected on class 1 integrons in all digesters with aminoglycosides as the dominant class. The abundance of ARGs on class 1 integrons in digesters at 55 °C was lower than that at 25 °C and 35 °C. Thermophilic AD is better than mesophilic ones in the control of ARGs carried by class 1 integrons.

11.
Virus Genes ; 58(6): 584-588, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35974285

RESUMO

The zoonotic H7N9 avian influenza virus emerged with the H9N2-origin internal gene cassette. Previous studies have reported that genetic reassortments with H9N2 were common in the first five human H7N9 epidemic waves. However, our latest work found that the circulating high pathogenicity H7N9 virus has established a dominant internal gene cassette and has decreased the frequency of reassortment with H9N2 since 2018. This dominant cassette of H7N9 was distinct from the cocirculating H9N2, although they shared a common ancestor. As a result, we suppose that this dominant cassette may benefit the viral population fitness and promote its continuous circulation in chickens.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H9N2/genética , Virulência/genética , Galinhas , Filogenia
12.
Microorganisms ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35744620

RESUMO

Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems and their genetic surroundings in the genus. We identified 22 integrase gene types, 17 of which were newly described, showing traits of multiple events of lateral genetic transfer (LGT). Phylogenetic analysis showed that most of them were strain-specific, except for Shewanella algae, where SonIntIA-like may have co-evolved within the host as typical CIs. It is noteworthy that co-existence of up to five different integrase genes within a strain, as well as their wide dissemination to Alteromonadales, Vibrionales, Chromatiales, Oceanospirillales and Enterobacterales was observed. In addition, identification of two novel MIs suggests that continuous LGT events may have occurred resembling the behavior of class 1 integrons. The constant emergence of determinants associated to antimicrobial resistance worldwide, concomitantly with novel MIs in strains capable to harbor several types of integrons, may be an alarming threat for the recruitment of novel antimicrobial resistance gene cassettes in the genus Shewanella, with its consequent contribution towards multidrug resistance in clinical isolates.

13.
J Glob Antimicrob Resist ; 29: 339-342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526811

RESUMO

OBJECTIVES: Human infection caused by an uncommon Salmonella enterica subsp. diarizonae (hereafter S. diarizonae) is rising. However, knowledge concerning S. diarizonae is still limited. This study aimed to investigate the genomic features of S. diarizonae S499 isolated from a child patient with gastroenteritis symptom in China. METHODS: The antimicrobial susceptibility of S. diarizonae S499 was determined by microdilution broth assay. Whole genome was sequenced using Illumina HiSeq X-10 and PacBio RS II platforms and was de novo assembled using Unicycler and SPAdes. Conjugation experiment was performed by a broth mating method. RESULTS: S. diarizonae S499 was a multi-drug resistant (MDR) isolate and showed resistance to all cephalosporin drugs tested. Six plasmids (pS0499A, pS0499B, pS0499C, pS0499D, pS0499E and pS0499F) were identified. A rare gene cassette IS26-blaCTX-M-55-wbuc-△blaTEM-1-IS26-intI1 was repeatedly inserted into pS0499A three times in one locus and reversely inserted into plasmid pS0499D. That enhanced cephalosporin resistance. To the best of our knowledge, this finding has not been reported previously. Both pS0499A and pS0499B contained multiple resistance genes and could transfer to recipient strain E. coli EC600. CONCLUSION: This article reported the genome features of S. diarizonae S499, which contained four resistant plasmids including a novel plasmid pS0499A with a novel gene cassette rearrangement. These data could contribute to a better understanding of the antimicrobial resistance mechanisms and transmission dynamics of S. diarizonae.


Assuntos
Anti-Infecciosos , Salmonella enterica , Criança , Escherichia coli/genética , Humanos , Plasmídeos/genética , Salmonella , Salmonella enterica/genética
14.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298369

RESUMO

Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of cassettes has promising applications, including: surveillance of clinically important genes, particularly antibiotic resistance determinants; investigating the functional diversity of integron-carrying bacteria; and novel enzyme discovery. Although gene cassettes can be directly recovered using PCR, there are no standardised methods for their amplification and, importantly, for validating sequences as genuine integron gene cassettes. Here, we present reproducible methods for the amplification, sequence processing, and validation of gene cassette amplicons from complex communities. We describe two different PCR assays that either amplify cassettes together with integron integrases, or gene cassettes together within cassette arrays. We compare the performance of Nanopore and Illumina sequencing, and present bioinformatic pipelines that filter sequences to ensure that they represent amplicons from genuine integrons. Using a diverse set of environmental DNAs, we show that our approach can consistently recover thousands of unique cassettes per sample and up to hundreds of different integron integrases. Recovered cassettes confer a wide range of functions, including antibiotic resistance, with as many as 300 resistance cassettes found in a single sample. In particular, we show that class one integrons are collecting and concentrating resistance genes out of the broader diversity of cassette functions. The methods described here can be applied to any environmental or clinical microbiome sample.


Assuntos
Integrons , Microbiota , Bactérias/genética , Resistência Microbiana a Medicamentos , Humanos , Integrases/genética , Integrons/genética , Microbiota/genética
15.
Microorganisms ; 10(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208680

RESUMO

Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.

16.
Antimicrob Agents Chemother ; 66(3): e0222721, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041510

RESUMO

In-silico analysis and cloning experiments identified a fosC2-like fosfomycin resistance gene in the chromosome of Aliidiomarina shirensis, with our data suggesting that this bacterium might be added to the list of species identified as reservoirs of fos-like genes that were subsequently acquired by other Gram-negative species. Indeed, the fosC2 gene was identified as acquired in Providencia huaxinensis and Aeromonas hydrophila isolates, with this gene being located in class 1 integron structures in the latter cases. Biochemical characterization and site-directed mutagenesis showed a higher catalytic efficiency for the intrinsic FosC2AS (from A. shirensis) than for the acquired FosC2 (from P. huaxinensis) enzyme due to a single substitution in the amino acid sequence (Gly43Glu). Notably, this study constitutes the first identification of the likely natural reservoir of a complete gene cassette (including its attC site).


Assuntos
Fosfomicina , Antibacterianos/farmacologia , Fosfomicina/farmacologia , Gammaproteobacteria , Integrons/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Reação em Cadeia da Polimerase
17.
New Microbes New Infect ; 44: 100943, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34631110

RESUMO

Stenotrophomonas maltophilia has emerged as an important nosocomial pathogen. Treatment of S. maltophilia infections is difficult due to increasing resistance to multiple antibacterial agents. In this 12-month cross-sectional study, from 2017 to 2018, 117 isolates were obtained from different clinical sources and identified by conventional biochemical methods. Antibiotic susceptibility tests were performed according to CLSI 2018. Minocycline disk (30 µg) and E-test strips for ceftazidime, trimethoprim-sulfamethoxazole and chloramphenicol were used. PCR confirmed isolates. The frequency of different classes of integrons (I, II) and resistance gene cassettes (sul1, sul2, dfrA1, dfrA5 and aadB) were determined by PCR. The results showed the highest frequency of resistance to chloramphenicol and ceftazidime with 32 cases (27.11%). Among strains, 12 cases (10.25%) were resistant to trimethoprim-sulfamethoxazole (the lowest frequency of resistance), while 19 (16.1%) isolates were resistant to minocycline. Frequency of sul1, int1, aadB, sul2, dfrA5 genes were 64 (55.08%), 26 (22.3 %), 18 (15.25%) and 17 (14.4%), 14 (11.86%), respectively. int2 and dfrA1 were not detected. Although we have not yet reached a high level of resistance to effective antibiotics such as trimethoprim-sulfamethoxazole, as these resistances can be carried by a plasmid, greater precision should be given to the administration of these antibiotics.

18.
Animals (Basel) ; 10(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171625

RESUMO

Campylobacter species are common commensals in the gastrointestinal tract of livestock animals; thus, animal-to-human transmission occurs frequently. We investigated for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Campylobacter species were detected in 58.11% of the analyzed chicken samples represented as 67.53% Campylobacter jejuni(C. jejuni) and 32.47% Campylobacter coli (C. coli). C. jejuni isolates were reported in 51.42%, 74.28%, and 66.67% of examined minced meat, raw milk, and human stool samples, respectively. Variable antimicrobial resistance phenotypes; PDR (2.55%), XDR (68.94%), and MDR (28.5%) campylobacters were reported. Molecular analysis revealed that 97.36% of examined campylobacters were integrase gene-positive; all harbored the class 1 integrons, except one possessed an empty integron structure. DNA sequence analysis revealed the predominance of aadA (81.08%) and dfrA (67.56%) alleles accounting for resistance to aminoglycosides and trimethoprim, respectively. This is the first report of aacC5-aadA7Δ4 gene cassette array and a putative phage tail tape measure protein on class 1 integrons of Campylobacter isolates. Evidence from this study showed the possibility of Campylobacter-bacteriophage interactions and treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons.

19.
Front Microbiol ; 11: 565349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154738

RESUMO

Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.

20.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545831

RESUMO

Trueperella pyogenes is an important opportunistic animal pathogen. Different antimicrobials, including aminoglycosides, are used to treat T. pyogenes infections. The aim of the present study was to evaluate aminoglycoside susceptibility and to detect aminoglycoside resistance determinants in 86 T. pyogenes isolates of different origin. Minimum inhibitory concentration of gentamicin, streptomycin, and kanamycin was determined using a standard broth microdilution method. Genetic elements associated with aminoglycoside resistance were investigated by PCR and DNA sequencing. All studied isolates were susceptible to gentamicin, but 32.6% and 11.6% of them were classified as resistant to streptomycin and kanamycin, respectively. A total of 30 (34.9%) isolates contained class 1 integrons. Class 1 integron gene cassettes carrying aminoglycoside resistance genes, aadA11 and aadA9, were found in seven and two isolates, respectively. Additionally, the aadA9 gene found in six isolates was not associated with mobile genetic elements. Moreover, other, not carried by gene cassettes, aminoglycoside resistance genes, strA-strB and aph(3')-IIIa, were also detected. Most importantly, this is the first description of all reported genes in T. pyogenes. Nevertheless, the relevance of the resistance phenotype to genotype was not perfectly matched in 14 isolates. Therefore, further investigations are needed to fully explain aminoglycoside resistance mechanisms in T. pyogenes.


Assuntos
Actinomycetaceae/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Integrons , Actinomycetaceae/genética , Actinomycetaceae/isolamento & purificação , Animais , Animais Selvagens/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Gentamicinas/farmacologia , Canamicina/farmacologia , Gado/microbiologia , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Estreptomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA