Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Immunol ; 15: 1326033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318188

RESUMO

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Assuntos
Venenos de Abelha , Meliteno , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais
2.
Curr Med Chem ; 31(15): 1983-2002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38031775

RESUMO

OBJECTIVE: Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY: The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS: This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION: The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Vacinas , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Transfecção , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Genes Neoplásicos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico
3.
Biomedicines ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893135

RESUMO

Alport syndrome (AS) is a rare genetic disorder categorized by the progressive loss of kidney function, sensorineural hearing loss and eye abnormalities. It occurs due to mutations in three genes that encode for the alpha chains of type IV collagen. Globally, the disease is classified based on the pattern of inheritance into X-linked AS (XLAS), which is caused by pathogenic variants in COL4A5, representing 80% of AS. Autosomal recessive AS (ARAS), caused by mutations in either COL4A3 or COL4A4, represents 15% of AS. Autosomal dominant AS (ADAS) is rare and has been recorded in 5% of all cases due to mutations in COL4A3 or COL4A4. This review provides updated knowledge about AS including its clinical and genetic characteristics in addition to available therapies that only slow the progression of the disease. It also focuses on reported cases in Saudi Arabia and their prevalence. Moreover, we shed light on advances in genetic technologies like gene editing using CRISPR/Cas9 technology, the need for an early diagnosis of AS and managing the progression of the disease. Eventually, we provide a few recommendations for disease management, particularly in regions like Saudi Arabia where consanguineous marriages increase the risk.

4.
J Bioeth Inq ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530962

RESUMO

Recently, Australia became the second jurisdiction worldwide to legalize the use of mitochondrial donation technology. The Mitochondrial Donation Law Reform (Maeve's Law) Bill 2021 allows individuals with a family history of mitochondrial disease to access assisted reproductive techniques that prevent the inheritance of mitochondrial disease. Using inductive content analysis, we assessed submissions sent to the Senate Committee as part of a programme of scientific inquiry and public consultation that informed drafting of the Bill. These submissions discussed a range of bioethical and legal considerations of central importance to the political debate. Significantly, submissions from those with a first-hand experience of mitochondrial disease, including clinicians and those with a family history of mitochondrial disease, were in strong support of this legislation. Those in support of the Bill commended the two-staged approach and rigorous licencing requirements as part of the Bill's implementation strategy. Submissions which outlined arguments against the legislation either opposed the use of these techniques in general or opposed aspects of the implementation strategy in Australia. These findings offer a window into the ethical arguments and perspectives that matter most to those Australians who took part in the Senate inquiry into mitochondrial donation. The insights garnered from these submissions may be used to help refine policy and guidelines as the field progresses.

5.
Chembiochem ; 24(11): e202300008, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862368

RESUMO

The sequencing of fungal genomes is becoming increasingly accessible, with a wealth of data already available. In parallel, the prediction of the putative biosynthetic pathways responsible for the synthesis of potential new natural products is also increasing. The difficulty of translating computational analyses into available compounds is becoming evident, slowing down a process that was thought to be faster with the advent of the genomic era. Advances in gene techniques made it possible to genetically modify a wider range of organisms, including fungi typically considered recalcitrant to DNA manipulation. However, the possibility of screening many gene cluster products for new activities in a high-throughput manner remains unfeasible. Nonetheless, some updates on the synthetic biology of fungi could provide interesting insights that could help to achieve this goal in the future.


Assuntos
Produtos Biológicos , Biologia Sintética , Fungos/metabolismo , Genoma Fúngico , Genômica , Vias Biossintéticas/genética , Produtos Biológicos/metabolismo , Família Multigênica
6.
Front Plant Sci ; 14: 1137598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938038

RESUMO

Last decade's advances in biotechnology, with the introduction of CRISPR, have challenged the regulatory framework for competent authorities all over the world. Hence, regulatory issues related to gene editing are currently high on the agenda both in the EU and in the European Economic Area (EEA) Agreement country of Norway, particularly with regards to sustainable agriculture. During the negotiations on the EEA Agreement, Norway was allowed to retain three extra aims in the Gene Technology Act: "That the production and use of GMO happens in an ethical way, is beneficial to society and is in accordance with the principle of sustainable development". We argue the case that taking sustainability into the decisions on regulating gene edited products could be easier in Norway than in the EU because of these extra aims. Late blight is our chosen example, as a devastating disease in potato that is controlled in Norway primarily by high levels of fungicide use. Also, many of these fungicides are being banned due to negative environmental and health effects. The costs of controlling late blight in Norway were calculated in 2006, and since then there have been new cultivars developed, inflation and an outbreak of war in Europe increasing farm input costs. A genetically modified (GM) cisgenic late blight resistant (LBR) potato presents a possible solution that could reduce fungicide use, but this could still be controversial. This paper aims to discuss the advantages and disadvantages of approving the commercial use of a GM LBR potato cultivar in Norway and compare these against currently used late blight management methods and conventional potato resistance breeding. We argue that a possible route for future regulatory framework could build upon the proposal by the Norwegian Biotechnology Advisory Board from 2019, also taking sustainability goals into account. This could favour a positive response from the Competent Authorities without breeching the European Economic Area (EEA) Agreement. Perhaps the EU could adopt a similar approach to fulfil their obligations towards a more sustainable agriculture?

7.
Chembiochem ; 24(12): e202200803, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36811229

RESUMO

Zwitterionic molecules, such as zwitterionic liquids (ZILs) and polypeptides (ZIPs), are attracting attention for application in new methods that can be used to loosen tight cell wall networks in a biocompatible manner. These novel methods can enhance the cell wall permeability of nanocarriers and increase their transfection efficiency into targeted subcellular organelles in plants. Herein, we provide an overview of the recent progress and future perspectives of such molecules that function as boosters for cell wall-penetrating nanocarriers.


Assuntos
Genes de Plantas , Proteínas de Plantas , Proteínas de Plantas/química , Plantas/genética , Parede Celular
8.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555716

RESUMO

The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis.


Assuntos
Parasitos , Tripanossomíase Africana , Animais , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Parasitos/metabolismo , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferinas , Luciferina de Vaga-Lumes/metabolismo
9.
Front Bioeng Biotechnol ; 10: 971402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118580

RESUMO

Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.

10.
GM Crops Food ; 13(1): 218-241, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35996854

RESUMO

Achieving global food security is becoming increasingly challenging and many stakeholders around the world are searching for new ways to reach this demanding goal. Here we demonstrate examples of genetically modified and genome edited plants introduced to the market in different world regions. Transgenic crops are regulated based on the characteristics of the product in many countries including the United States and Canada, while the European Union, India, China and others regulate process-based i.e. on how the product was made. We also present the public perception of state-of-the-art plant gene technologies in different regions of the world in the past 20 years. The results of literature analysis show that the public in Europe and North America is more familiar with the notion of genome editing and genetically modified organisms than the public in other world regions.


Assuntos
Genes de Plantas , Opinião Pública , Biotecnologia , Segurança Alimentar , Edição de Genes/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Estados Unidos
11.
Angew Chem Int Ed Engl ; 61(32): e202204234, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670289

RESUMO

Targeted delivery of genes to specific plant organelles is a key challenge for fundamental plant science, plant bioengineering, and agronomic applications. Nanoscale carriers have attracted interest as a promising tool for organelle-targeted DNA delivery in plants. However, nanocarrier-mediated DNA delivery in plants is severely hampered by the barrier of the plant cell wall, resulting in insufficient delivery efficiency. Herein, we propose a unique strategy that synergistically combines a cell wall-loosening zwitterionic liquid (ZIL) with a peptide-displaying micelle complex for organelle-specific DNA delivery in plants. We demonstrated that ZIL pretreatment can enhance cell wall permeability without cytotoxicity, allowing micelle complexes to translocate across the cell wall and carry DNA cargo into specific plant organelles, such as nuclei and chloroplasts, with significantly augmented efficiency. Our work offers a novel concept to overcome the plant cell wall barrier for nanocarrier-mediated cargo delivery to specific organelles in living plants.


Assuntos
DNA , Micelas , Parede Celular , Organelas , Plantas
12.
Front Med (Lausanne) ; 9: 883434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620726

RESUMO

•In contrast to the prior voluntary system, since 2001, gene technology in Australia has been regulated under a legislated national Gene Technology Regulatory Scheme which is administered by the Gene Technology Regulator.•The Scheme provides science-based assessment of the potential risks of gene technology to the health and safety of people and the environment.•It complements the role of the Australian Therapeutic Goods Administration which regulates all therapeutic products in Australia to ensure they are safe and effective.•Recent reforms to the Scheme contribute to, and anticipate, the continued safe development and delivery of gene-based human therapeutics in Australia as a successful model for other jurisdictions.

13.
Chemistry ; 28(43): e202104618, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604769

RESUMO

A transfection vector that can home in on tumors is reported. Whereas previous vectors that allow moderately cell selective gene transfection used larger systems, this small-molecule approach paved the way for precise structure-activity relationship optimization. For this, biotin, which mediates cell selectivity, was combined with the potent DNA-binding motif tetralysine-guanidinocarbonypyrrol via a hydrophilic linker, thus enabling SAR-based optimization. The new vector mediated biotin receptor (BR)-selective transfection of cell lines with different BR expression levels. Computer-based analyses of microscopy images revealed a preference of one order of magnitude for the BR-positive cell lines over the BR-negative controls.


Assuntos
Vetores Genéticos , Neoplasias , Biotina/metabolismo , Linhagem Celular , Humanos , Transfecção
14.
Front Genome Ed ; 4: 1064103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704579

RESUMO

Through genome editing and other techniques of gene technology, it is possible to create a class of organism called null segregants. These genetically modified organisms (GMOs) are products of gene technology but are argued to have no lingering vestige of the technology after the segregation of chromosomes or deletion of insertions. From that viewpoint regulations are redundant because any unique potential for the use of gene technology to cause harm has also been removed. We tackle this question of international interest by reviewing the early history of the purpose of gene technology regulation. The active ingredients of techniques used for guided mutagenesis, e.g., site-directed nucleases, such as CRISPR/Cas, are promoted for having a lower potential per reaction to create a hazard. However, others see this as a desirable industrial property of the reagents that will lead to genome editing being used more and nullifying the promised hazard mitigation. The contest between views revolves around whether regulations could alter the risks in the responsible use of gene technology. We conclude that gene technology, even when used to make null segregants, has characteristics that make regulation a reasonable option for mitigating potential harm. Those characteristics are that it allows people to create more harm faster, even if it creates benefits as well; the potential for harm increases with increased use of the technique, but safety does not; and regulations can control harm scaling.

15.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068283

RESUMO

DNA double-strand breaks (DSBs), interrupting the genetic information, are elicited by various environmental and endogenous factors. They bear the risk of cell lethality and, if mis-repaired, of deleterious mutation. This negative impact is contrasted by several evolutionary achievements for DSB processing that help maintaining stable inheritance (correct repair, meiotic cross-over) and even drive adaptation (immunoglobulin gene recombination), differentiation (chromatin elimination) and speciation by creating new genetic diversity via DSB mis-repair. Targeted DSBs play a role in genome editing for research, breeding and therapy purposes. Here, I survey possible causes, biological effects and evolutionary consequences of DSBs, mainly for students and outsiders.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose , Animais , Edição de Genes , Humanos
16.
Front Plant Sci ; 12: 787549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35281698

RESUMO

Paspalum dilatatum (common name dallisgrass), a productive C4 grass native to South America, is an important pasture grass found throughout the temperate warm regions of the world. It is characterized by its tolerance to frost and water stress and a higher forage quality than other C4 forage grasses. P. dilatatum includes tetraploid (2n = 40), sexual, and pentaploid (2n = 50) apomictic forms, but is predominantly cultivated in an apomictic monoculture, which implies a high risk that biotic and abiotic stresses could seriously affect the grass productivity. The obtention of reproducible and efficient protocols of regeneration and transformation are valuable tools to obtain genetic modified grasses with improved agronomics traits. In this review, we present the current regeneration and transformation methods of both apomictic and sexual cultivars of P. dilatatum, discuss their strengths and limitations, and focus on the perspectives of genetic modification for producing new generation of forages. The advances in this area of research lead us to consider Paspalum dilatatum as a model species for the molecular improvement of C4 perennial forage species.

17.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008008

RESUMO

Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.


Assuntos
Brassica napus/genética , Produtos Agrícolas/genética , Engenharia Genética , Técnicas Genéticas , Genômica , Melhoramento Vegetal , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Resistência à Doença/genética , Genoma de Planta , Herbicidas , Doenças das Plantas/genética , Óleo de Brassica napus/análise , Óleo de Brassica napus/química , Sementes/química , Sementes/crescimento & desenvolvimento , Estresse Fisiológico
18.
Biotechnol J ; 15(12): e2000117, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32845071

RESUMO

Quantum dots (QDs) are semiconductor materials that have gained great interest due to their unique characteristics like optical properties. They are extensively being used in different areas, including solar cells, light-emitting diodes, laser technology, as well as biological and biomedical applications. In this review, comprehensive information about different aspects of QDs is provided, including their types and classifications, synthesis approaches, in vitro and in vivo toxicity, biological applications, and potentials in clinical applications. With a focus on the biological aspects, the respective in vitro and in vivo studies are collected and presented. Various surface modifications on QDs are discussed as directly influencing their properties like toxicity and optical abilities. Given the promising results, these materials are clinically used for targeted molecular therapy and imaging. However, there are a large number of questions that should be addressed before the wide application of QDs in a clinical setting. Regarding the existing barriers to QDs, suggestions are given and discussed to present an appropriate route for the clinical use of these materials.


Assuntos
Pontos Quânticos , Diagnóstico por Imagem , Luz
19.
Sci Eng Ethics ; 26(5): 2601-2627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424723

RESUMO

This article presents and evaluates arguments supporting that an approval procedure for genome-edited organisms for food or feed should include a broad assessment of societal, ethical and environmental concerns; so-called non-safety assessment. The core of analysis is the requirement of the Norwegian Gene Technology Act that the sustainability, ethical and societal impacts of a genetically modified organism should be assessed prior to regulatory approval of the novel products. The article gives an overview how this requirement has been implemented in the regulatory practice, demonstrating that such assessment is feasible and justified. Even in situations where genome-edited organisms are considered comparable to non-modified organisms in terms of risk, the technology may have-in addition to social benefits-negative impacts that warrant assessments of the kind required in the Act. The main reason is the disruptive character of the genome editing technologies due to their potential for novel, ground-breaking solutions in agriculture and aquaculture combined with the economic framework shaped by the patent system. Food is fundamental for a good life, biologically and culturally, which warrants stricter assessment procedures than what is required for other industries, at least in countries like Norway with a strong tradition for national control over agricultural markets and breeding programs.


Assuntos
Edição de Genes , Genoma , Agricultura , Humanos , Noruega , Plantas Geneticamente Modificadas/genética
20.
Adv Mater ; 32(17): e2000208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147886

RESUMO

Effective reversal of tumor immunosuppression is of critical importance in cancer therapy. A multifunctional delivery vector that can effectively deliver CRISPR-Cas9 plasmid for ß-catenin knockout to reverse tumor immunosuppression is constructed. The multi-functionalized delivery vector is decorated with aptamer-conjugated hyaluronic acid and peptide-conjugated hyaluronic acid to combine the tumor cell/nuclear targeting function of AS1411 with the cell penetrating/nuclear translocation function of TAT-NLS. Due to the significantly enhanced plasmid enrichment in malignant cell nuclei, the genome editing system can induce effective ß-catenin knockout and suppress Wnt/ß-catenin pathway, resulting in notably downregulated proteins involved in tumor progression and immunosuppression. Programmed death-ligand 1 (PD-L1) downregulation in edited tumor cells not only releases the PD-1/PD-L1 brake to improve the cancer killing capability of CD8+ T cells, but also enhances antitumor immune responses of immune cells. This provides a facile strategy to reverse tumor immunosuppression and to restore immunosurveillance and activate anti-tumor immunity.


Assuntos
Aptâmeros de Nucleotídeos/química , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Peptídeos/química , Animais , Apoptose , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Ácido Hialurônico/química , Terapia de Imunossupressão , Nanopartículas/química , Oligodesoxirribonucleotídeos/química , Plasmídeos/química , Plasmídeos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , beta Catenina/deficiência , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA