Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Cortex ; 179: 62-76, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39141936

RESUMO

The quantification of cognitive powers rests on identifying a behavioural task that depends on them. Such dependence cannot be assured, for the powers a task invokes cannot be experimentally controlled or constrained a priori, resulting in unknown vulnerability to failure of specificity and generalisability. Evaluating a compact version of Raven's Advanced Progressive Matrices (RAPM), a widely used clinical test of fluid intelligence, we show that LaMa, a self-supervised artificial neural network trained solely on the completion of partially masked images of natural environmental scenes, achieves representative human-level test scores a prima vista, without any task-specific inductive bias or training. Compared with cohorts of healthy and focally lesioned participants, LaMa exhibits human-like variation with item difficulty, and produces errors characteristic of right frontal lobe damage under degradation of its ability to integrate global spatial patterns. LaMa's narrow training and limited capacity suggest matrix-style tests may be open to computationally simple solutions that need not necessarily invoke the substrates of reasoning.

2.
Cell Syst ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106868

RESUMO

Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.

3.
Drug Discov Today ; : 104133, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103144

RESUMO

Deep generative models (GMs) have transformed the exploration of drug-like chemical space (CS) by generating novel molecules through complex, nontransparent processes, bypassing direct structural similarity. This review examines five key architectures for CS exploration: recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows (NF), and transformers. It discusses molecular representation choices, training strategies for focused CS exploration, evaluation criteria for CS coverage, and related challenges. Future directions include refining models, exploring new notations, improving benchmarks, and enhancing interpretability to better understand biologically relevant molecular properties.

4.
Front Robot AI ; 11: 1353870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109321

RESUMO

Understanding the emergence of symbol systems, especially language, requires the construction of a computational model that reproduces both the developmental learning process in everyday life and the evolutionary dynamics of symbol emergence throughout history. This study introduces the collective predictive coding (CPC) hypothesis, which emphasizes and models the interdependence between forming internal representations through physical interactions with the environment and sharing and utilizing meanings through social semiotic interactions within a symbol emergence system. The total system dynamics is theorized from the perspective of predictive coding. The hypothesis draws inspiration from computational studies grounded in probabilistic generative models and language games, including the Metropolis-Hastings naming game. Thus, playing such games among agents in a distributed manner can be interpreted as a decentralized Bayesian inference of representations shared by a multi-agent system. Moreover, this study explores the potential link between the CPC hypothesis and the free-energy principle, positing that symbol emergence adheres to the society-wide free-energy principle. Furthermore, this paper provides a new explanation for why large language models appear to possess knowledge about the world based on experience, even though they have neither sensory organs nor bodies. This paper reviews past approaches to symbol emergence systems, offers a comprehensive survey of related prior studies, and presents a discussion on CPC-based generalizations. Future challenges and potential cross-disciplinary research avenues are highlighted.

5.
Herz ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120735

RESUMO

Recent progress in artificial intelligence (AI) includes generative models, multimodal foundation models, and federated learning, which enable a wide spectrum of novel exciting applications and scenarios for cardiac image analysis and cardiovascular interventions. The disruptive nature of these novel technologies enables concurrent text and image analysis by so-called vision-language transformer models. They not only allow for automatic derivation of image reports, synthesis of novel images conditioned on certain textual properties, and visual questioning and answering in an oral or written dialogue style, but also for the retrieval of medical images from a large database based on a description of the pathology or specifics of the dataset of interest. Federated learning is an additional ingredient in these novel developments, facilitating multi-centric collaborative training of AI approaches and therefore access to large clinical cohorts. In this review paper, we provide an overview of the recent developments in the field of cardiovascular imaging and intervention and offer a future outlook.

6.
Phys Med Biol ; 69(15)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38986481

RESUMO

Objective. Predicting potential deformations of patients can improve radiotherapy treatment planning. Here, we introduce new deep-learning models that predict likely anatomical changes during radiotherapy for head and neck cancer patients.Approach. Denoising diffusion probabilistic models (DDPMs) were developed to generate fraction-specific anatomical changes based on a reference cone-beam CT (CBCT), the fraction number and the dose distribution delivered. Three distinct DDPMs were developed: (1) theimage modelwas trained to directly generate likely future CBCTs, (2) the deformable vector field (DVF) model was trained to generate DVFs that deform a reference CBCT and (3) thehybrid modelwas trained similarly to the DVF model, but without relying on an external deformable registration algorithm. The models were trained on 9 patients with longitudinal CBCT images (224 CBCTs) and evaluated on 5 patients (152 CBCTs).Results. The generated images mainly exhibited random positioning shifts and small anatomical changes for early fractions. For later fractions, all models predicted weight losses in accordance with the training data. The distributions of volume and position changes of the body, esophagus, and parotids generated with the image and hybrid models were more similar to the ground truth distribution than the DVF model, evident from the lower Wasserstein distance achieved with the image (0.33) and hybrid model (0.30) compared to the DVF model (0.36). Generating several images for the same fraction did not yield the expected variability since the ground truth anatomical changes were only in 76% of the fractions within the 95% bounds predicted with the best model. Using the generated images for robust optimization of simplified proton therapy plans improved the worst-case clinical target volume V95 with 7% compared to optimizing with 3 mm set-up robustness while maintaining a similar integral dose.Significance. The newly developed DDPMs generate distributions similar to the real anatomical changes and have the potential to be used for robust anatomical optimization.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Difusão
7.
Artif Intell Med ; 154: 102925, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968921

RESUMO

In this work, we present CodeAR, a medical time series generative model for electronic health record (EHR) synthesis. CodeAR employs autoregressive modeling on discrete tokens obtained using a vector quantized-variational autoencoder (VQ-VAE), which addresses key challenges of accurate distribution modeling and patient privacy preservation in the medical domain. The proposed model is trained with next-token prediction instead of a regression problem for more accurate distribution modeling, where the autoregressive property of CodeAR is useful to capture the inherent causality in time series data. In addition, the compressive property of the VQ-VAE prevents CodeAR from memorizing the original training data, which ensures patient privacy. Experimental results demonstrate that CodeAR outperforms the baseline autoregressive-based and GAN-based models in terms of maximum mean discrepancy (MMD) and Train on Synthetic, Test on Real tests. Our results highlight the effectiveness of autoregressive modeling on discrete tokens, the utility of CodeAR in causal modeling, and its robustness against data memorization.


Assuntos
Registros Eletrônicos de Saúde , Humanos , Fatores de Tempo , Análise de Regressão
8.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066133

RESUMO

Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from sensor observations. The model is implemented through a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully observed environments from accumulated partial observations. We show that the OV-PWM can model high-dimensional embedding maps of latent compositional embeddings representing sets of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA simulator experiments show that the OV-PWM can learn compact latent representations and generate diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities to future general-purpose mobile robots.

9.
Comput Struct Biotechnol J ; 23: 2779-2797, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39050782

RESUMO

Recent breakthroughs in deep learning have revolutionized protein sequence and structure prediction. These advancements are built on decades of protein design efforts, and are overcoming traditional time and cost limitations. Diffusion models, at the forefront of these innovations, significantly enhance design efficiency by automating knowledge acquisition. In the field of de novo protein design, the goal is to create entirely novel proteins with predetermined structures. Given the arbitrary positions of proteins in 3-D space, graph representations and their properties are widely used in protein generation studies. A critical requirement in protein modelling is maintaining spatial relationships under transformations (rotations, translations, and reflections). This property, known as equivariance, ensures that predicted protein characteristics adapt seamlessly to changes in orientation or position. Equivariant graph neural networks offer a solution to this challenge. By incorporating equivariant graph neural networks to learn the score of the probability density function in diffusion models, one can generate proteins with robust 3-D structural representations. This review examines the latest deep learning advancements, specifically focusing on frameworks that combine diffusion models with equivariant graph neural networks for protein generation.

10.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856172

RESUMO

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Peptídeos , Peptídeos/química , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Descoberta de Drogas/métodos , Humanos , Desenho de Fármacos , Aprendizado de Máquina , Biologia Computacional/métodos
11.
Entropy (Basel) ; 26(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38920504

RESUMO

Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.

12.
Drug Discov Today ; 29(7): 104024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759948

RESUMO

3D structure-based drug design (SBDD) is considered a challenging and rational way for innovative drug discovery. Geometric deep learning is a promising approach that solves the accurate model training of 3D SBDD through building neural network models to learn non-Euclidean data, such as 3D molecular graphs and manifold data. Here, we summarize geometric deep learning methods and applications that contain 3D molecular representations, equivariant graph neural networks (EGNNs), and six generative model methods [diffusion model, flow-based model, generative adversarial networks (GANs), variational autoencoder (VAE), autoregressive models, and energy-based models]. Our review provides insights into geometric deep learning methods and advanced applications of 3D SBDD that will be of relevance for the drug discovery community.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , Redes Neurais de Computação , Descoberta de Drogas/métodos , Humanos , Estrutura Molecular
13.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712293

RESUMO

Introduction: Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods: Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results: In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion: We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.

14.
Proc Natl Acad Sci U S A ; 121(23): e2322376121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809705

RESUMO

In this article, we develop CausalEGM, a deep learning framework for nonlinear dimension reduction and generative modeling of the dependency among covariate features affecting treatment and response. CausalEGM can be used for estimating causal effects in both binary and continuous treatment settings. By learning a bidirectional transformation between the high-dimensional covariate space and a low-dimensional latent space and then modeling the dependencies of different subsets of the latent variables on the treatment and response, CausalEGM can extract the latent covariate features that affect both treatment and response. By conditioning on these features, one can mitigate the confounding effect of the high dimensional covariate on the estimation of the causal relation between treatment and response. In a series of experiments, the proposed method is shown to achieve superior performance over existing methods in both binary and continuous treatment settings. The improvement is substantial when the sample size is large and the covariate is of high dimension. Finally, we established excess risk bounds and consistency results for our method, and discuss how our approach is related to and improves upon other dimension reduction approaches in causal inference.

15.
Comput Biol Med ; 176: 108561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749321

RESUMO

Deep Generative Models (DGMs) are becoming instrumental for inferring probability distributions inherent to complex processes, such as most questions in biomedical research. For many years, there was a lack of mathematical methods that would allow this inference in the scarce data scenario of biomedical research. The advent of single-cell omics has finally made square the so-called "skinny matrix", allowing to apply mathematical methods already extensively used in other areas. Moreover, it is now possible to integrate data at different molecular levels in thousands or even millions of samples, thanks to the number of single-cell atlases being collaboratively generated. Additionally, DGMs have proven useful in other frequent tasks in single-cell analysis pipelines, from dimensionality reduction, cell type annotation to RNA velocity inference. In spite of its promise, DGMs need to be used with caution in biomedical research, paying special attention to its use to answer the right questions and the definition of appropriate error metrics and validation check points that confirm not only its correct use but also its relevance. All in all, DGMs provide an exciting tool that opens a bright future for the integrative analysis of single-cell -omics to understand health and disease.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Aprendizado Profundo , Biologia Computacional/métodos
16.
Med Image Anal ; 95: 103209, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781754

RESUMO

Case-based explanations are an intuitive method to gain insight into the decision-making process of deep learning models in clinical contexts. However, medical images cannot be shared as explanations due to privacy concerns. To address this problem, we propose a novel method for disentangling identity and medical characteristics of images and apply it to anonymize medical images. The disentanglement mechanism replaces some feature vectors in an image while ensuring that the remaining features are preserved, obtaining independent feature vectors that encode the images' identity and medical characteristics. We also propose a model to manufacture synthetic privacy-preserving identities to replace the original image's identity and achieve anonymization. The models are applied to medical and biometric datasets, demonstrating their capacity to generate realistic-looking anonymized images that preserve their original medical content. Additionally, the experiments show the network's inherent capacity to generate counterfactual images through the replacement of medical features.


Assuntos
Anonimização de Dados , Humanos , Aprendizado Profundo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38715792

RESUMO

Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability. This work focused on adapting the 2D latent diffusion models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. The framework comprises two components: a 3D autoencoder model for perceptual compression and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, our models generate multi-contrast 3D MRI samples. We also integrated a conditional module within the UNet backbone of the DPM to capture the semantic class-dependent data distribution driven by the provided tumor mask to generate MRI brain tumor samples based on a specific brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain tumor MRI samples with the tumor location aligned by the input condition mask. The quality of the generated images was evaluated using the Fréchet Inception Distance (FID) score. This work has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep learning models involving brain tumor MRI data.

18.
JMIR Form Res ; 8: e53241, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648097

RESUMO

BACKGROUND: Electronic health records are a valuable source of patient information that must be properly deidentified before being shared with researchers. This process requires expertise and time. In addition, synthetic data have considerably reduced the restrictions on the use and sharing of real data, allowing researchers to access it more rapidly with far fewer privacy constraints. Therefore, there has been a growing interest in establishing a method to generate synthetic data that protects patients' privacy while properly reflecting the data. OBJECTIVE: This study aims to develop and validate a model that generates valuable synthetic longitudinal health data while protecting the privacy of the patients whose data are collected. METHODS: We investigated the best model for generating synthetic health data, with a focus on longitudinal observations. We developed a generative model that relies on the generalized canonical polyadic (GCP) tensor decomposition. This model also involves sampling from a latent factor matrix of GCP decomposition, which contains patient factors, using sequential decision trees, copula, and Hamiltonian Monte Carlo methods. We applied the proposed model to samples from the MIMIC-III (version 1.4) data set. Numerous analyses and experiments were conducted with different data structures and scenarios. We assessed the similarity between our synthetic data and the real data by conducting utility assessments. These assessments evaluate the structure and general patterns present in the data, such as dependency structure, descriptive statistics, and marginal distributions. Regarding privacy disclosure, our model preserves privacy by preventing the direct sharing of patient information and eliminating the one-to-one link between the observed and model tensor records. This was achieved by simulating and modeling a latent factor matrix of GCP decomposition associated with patients. RESULTS: The findings show that our model is a promising method for generating synthetic longitudinal health data that is similar enough to real data. It can preserve the utility and privacy of the original data while also handling various data structures and scenarios. In certain experiments, all simulation methods used in the model produced the same high level of performance. Our model is also capable of addressing the challenge of sampling patients from electronic health records. This means that we can simulate a variety of patients in the synthetic data set, which may differ in number from the patients in the original data. CONCLUSIONS: We have presented a generative model for producing synthetic longitudinal health data. The model is formulated by applying the GCP tensor decomposition. We have provided 3 approaches for the synthesis and simulation of a latent factor matrix following the process of factorization. In brief, we have reduced the challenge of synthesizing massive longitudinal health data to synthesizing a nonlongitudinal and significantly smaller data set.

19.
Netw Neurosci ; 8(1): 24-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562283

RESUMO

A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days, or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multiscale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.

20.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581415

RESUMO

Discovering hit molecules with desired biological activity in a directed manner is a promising but profound task in computer-aided drug discovery. Inspired by recent generative AI approaches, particularly Diffusion Models (DM), we propose Graph Latent Diffusion Model (GLDM)-a latent DM that preserves both the effectiveness of autoencoders of compressing complex chemical data and the DM's capabilities of generating novel molecules. Specifically, we first develop an autoencoder to encode the molecular data into low-dimensional latent representations and then train the DM on the latent space to generate molecules inducing targeted biological activity defined by gene expression profiles. Manipulating DM in the latent space rather than the input space avoids complicated operations to map molecule decomposition and reconstruction to diffusion processes, and thus improves training efficiency. Experiments show that GLDM not only achieves outstanding performances on molecular generation benchmarks, but also generates samples with optimal chemical properties and potentials to induce desired biological activity.


Assuntos
Benchmarking , Descoberta de Drogas , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA