RESUMO
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
RESUMO
A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.
Assuntos
Espécies Introduzidas , Spodoptera , Animais , China , Produtos Agrícolas , Mitocôndrias/metabolismo , Dinâmica PopulacionalRESUMO
The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.
RESUMO
Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the 60 sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.
Assuntos
Coffea , Micoses , Coffea/genética , Melhoramento Vegetal , EtiópiaRESUMO
BACKGROUND: L. monocytogenes and L. ivanovii, the only two pathogens of Listeria, can survive in various environments, having different pathogenic characteristics. However, the genetic basis of their excellent adaptability and differences in pathogenicity has still not been completely elucidated. METHODS: We performed a comparative genomic analysis based on 275 L. monocytogenes, 10 L. ivanovii, and 22 non-pathogenic Listeria strains. RESULTS: Core/pan-genome analysis revealed that 975 gene families were conserved in all the studied strains. Additionally, 204, 242, and 756 gene families existed uniquely in L. monocytogenes, L. ivanovii, and both, respectively. Functional annotation partially verified that these unique gene families were closely related to their adaptability and pathogenicity. Moreover, the protein-protein interaction (PPI) network analysis of these unique gene sets showed that plenty of carbohydrate transport systems and energy metabolism enzymes were clustered in the networks. Interestingly, ethanolamine-metabolic-process-related proteins were significantly enriched in the PPI network of the unique genes of the Listeria pathogens, which can be understood as a determining factor of their pathogenicity. CONCLUSIONS: The utilization capacity of multiple carbon sources of Listeria pathogens, especially ethanolamine, is the key genetic basis for their ability to adapt to various environments and pathogenic lifestyles.
RESUMO
The trade in live animals between India and Brazil dates from the late nineteenth century when European travellers traded animals of Indian origin for display in zoos. Considering the origin of coffee and sugar cane, as well as the expertise related to mineral evaluation, we need to consider that India was involved in important economic cycles of Brazil, even indirectly. This virtuous flow of trade has been maintained and intensified throughout modern history, especially after these two nations gained political independence from their colonisers, thereby becoming independent in mercantile affairs. This paper addresses the main points related to the use of animals of Indian origin in Brazil. We revisit some of the historical aspects of the process of colonisation of Brazil, as well as the importation of animals from India. The restrictions imposed on this process due to the occurrence of diseases in cattle and buffalo in India will be examined. At the end of the text, emphasis will be given to the risks of introducing exotic diseases into Brazil.
RESUMO
The classification and description of digenean trematodes are commonly accomplished by using morphological features, especially in adult stages. The aim of this study was to provide an analysis of the genetic composition of larval digenean trematodes using polymerase chain reaction (PCR) and sequence analysis. Deoxyribonucleic acid (DNA) was extracted from clinostomatid metacercaria, 27-spined echinostomatid redia, avian schistosome cercaria and strigeid metacercaria from various dams in the proximity of Tshwane metropolitan, South Africa. Polymerase chain reaction was performed using the extracted DNA with primers targeting various regions within the larval digenean trematodes' genomes. Agarose gel electrophoresis technique was used to visualise the PCR products. The PCR products were sequenced on an Applied Bioinformatics (ABI) genetic analyser platform. Genetic information obtained from this study had a higher degree of discrimination than the morphological characteristics of seemingly similar organisms.
Assuntos
Interações Hospedeiro-Parasita , Reação em Cadeia da Polimerase/veterinária , Trematódeos/classificação , Animais , Peixes/parasitologia , Metacercárias/classificação , Metacercárias/genética , Metacercárias/crescimento & desenvolvimento , Metacercárias/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase/métodos , Caramujos/parasitologia , África do Sul , Trematódeos/genética , Trematódeos/crescimento & desenvolvimento , Trematódeos/isolamento & purificaçãoRESUMO
The identification and conservation of indigenous rhizobia associated with legume plants and their application as biofertilizers is becoming an agricultural worldwide priority. However, little is known about the genetic diversity and phylogeny of rhizobia in Romania. In the present study, the genetic diversity and population composition of Rhizobium leguminosarum symbiovar trifolii isolates from 12 clover plants populations located across two regions in Romania were analyzed. Red clover isolates were phenotypically evaluated and genotyped by sequencing 16S rRNA gene, 16S-23S intergenic spacer, three chromosomal genes (atpD, glnII and recA) and two plasmid genes (nifH and nodA). Multilocus sequence typing (MLST) analysis revealed that red clover plants are nodulated by a wide genetic diversity of R. leguminosarum symbiovar trifolii sequence types (STs), highly similar to the ones previously found in white clover. Rhizobial genetic variation was found mainly within the two clover populations for both chromosomal and plasmid types. Many STs appear to be unique for this region and the genetic composition of rhizobia differs significantly among the clover populations. Furthermore, our results showed that both soil pH and altitude contributed to plasmid sequence type composition while differences in chromosomal composition were affected by the altitude and were strongly correlated with distance.
Assuntos
Variação Genética , Medicago/microbiologia , Filogenia , Rhizobium leguminosarum/genética , Nódulos Radiculares de Plantas/microbiologia , Trifolium/microbiologia , Altitude , DNA Bacteriano/genética , Genes Bacterianos , Genética Populacional , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA , Solo/química , SimbioseRESUMO
BACKGROUND: The rhesus macaque is an important biomedical model organism, and the Tulane National Primate Research Center (TNPRC) has one of the largest rhesus macaque breeding colonies in the United States. METHODS: SNP profiles from 3266 rhesus macaques were used to examine the TNPRC colony genetic composition over time and across conventional or SPF animals of Chinese and Indian ancestry. RESULTS: Chinese origin animals were the least genetically diverse and the most inbred; however, since their derivation from their conventional forebearers, neither the Chinese nor the Indian SPF animals exhibit any significant loss of genetic diversity or differentiation. CONCLUSIONS: The TNPRC colony managers have successfully minimized loss in genetic variation across generations. Although founder effects and bottlenecks among the Indian animals have been successfully curtailed, the Chinese subpopulation still show some influences from these events.
Assuntos
Genótipo , Macaca mulatta/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Louisiana , Masculino , Organismos Livres de Patógenos EspecíficosRESUMO
BACKGROUND: A major function of the captive panda population is to preserve the genetic diversity of wild panda populations in their natural habitats. Understanding the genetic composition of the captive panda population in terms of genetic contributions from the wild panda populations provides necessary knowledge for breeding plans to preserve the genetic diversity of the wild panda populations. RESULTS: The genetic contributions from different wild populations to the captive panda population were highly unbalanced, with Qionglai accounting for 52.2 % of the captive panda gene pool, followed by Minshan with 21.5 %, Qinling with 10.6 %, Liangshan with 8.2 %, and Xiaoxiangling with 3.6 %, whereas Daxiangling, which had similar population size as Xiaoxiangling, had no genetic representation in the captive population. The current breeding recommendations may increase the contribution of some small wild populations at the expense of decreasing the contributions of other small wild populations, i.e., increasing the Xiaoxiangling contribution while decreasing the contribution of Liangshan, or sharply increasing the Qinling contribution while decreasing the contributions of Xiaoxiangling and Liangshan, which were two of the three smallest wild populations and were already severely under-represented in the captive population. We developed three habitat-controlled breeding plans that could increase the genetic contributions from the smallest wild populations to 6.7-11.2 % for Xiaoxiangling, 11.5-12.3 % for Liangshan and 12.9-20.0 % for Qinling among the offspring of one breeding season while reducing the risk of hidden inbreeding due to related founders from the same habitat undetectable by pedigree data. CONCLUSION: The three smallest wild panda populations of Daxiangling, Xiaoxiangling and Liangshan either had no representation or were severely unrepresented in the current captive panda population. By incorporating the breeding goal of increasing the genetic contributions from the smallest wild populations into breeding plans, the severely under-represented small wild populations in the current captive panda population could be increased steadily for the near future.
Assuntos
Ursidae/genética , Animais , Ecossistema , Espécies em Perigo de Extinção , Feminino , Variação Genética , Endogamia , Masculino , LinhagemRESUMO
The intense fishing mortality imposed on Atlantic cod in Icelandic waters during recent decades has resulted in marked changes in stock abundance, as well as in age and size composition. Using a molecular marker known to be under selection (Pan I) along with a suite of six neutral microsatellite loci, we analysed an archived data set and revealed evidence of distinct temporal changes in the frequencies of genotypes at the Pan I locus among spawning Icelandic cod, collected between 1948 and 2002, a period characterized by high fishing pressure. Concurrently, temporal stability in the composition of the microsatellite loci was established within the same data set. The frequency of the Pan I(BB) genotype decreased over a period of six decades, concomitant with considerable spatial and technical changes in fishing effort that resulted in the disappearance of older individuals from the fishable stock. Consequently, these changes have likely led to a change in the genotype frequencies at this locus in the spawning stock of Icelandic cod. The study highlights the value of molecular genetic approaches that combine functional and neutral markers examined in the same set of individuals for investigations of the selective effects of harvesting and reiterates the need for an evolutionary dimension to fisheries management.