Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37219924

RESUMO

LldR is a lactate-responsive transcription factor (TF) that transcriptionally regulates the lldPRD operon consisting of lactate permease and lactate dehydrogenase. The lldPRD operon facilitates the utilisation of lactic acid in bacteria. However, the role of LldR in whole genomic transcriptional regulation, and the mechanism involved in adaptation to lactate remains unclear. We used genomic SELEX (gSELEX) to comprehensively analyse the genomic regulatory network of LldR to understand the overall regulatory mechanism of lactic acid adaptation of the model intestinal bacterium Escherichia coli. In addition to the involvement of the lldPRD operon in utilising lactate as a carbon source, genes related to glutamate-dependent acid resistance and altering the composition of membrane lipids were identified as novel targets of LldR. A series of in vitro and in vivo regulatory analyses led to the identification of LldR as an activator of these genes. Furthermore, the results of lactic acid tolerance tests and co-culture experiments with lactic acid bacteria suggested that LldR plays a significant role in adapting to the acid stress induced by lactic acid. Therefore, we propose that LldR is an l-/d-lactate sensing TF for utilising lactate as a carbon source and for resistance to lactate-induced acid stress in intestinal bacteria.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Ácido Láctico , Escherichia coli , Regulação da Expressão Gênica , Fatores de Transcrição , Carbono , Proteínas de Ligação a DNA
2.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682733

RESUMO

Understanding the functional information of all genes and the biological mechanism based on the comprehensive genome regulation mechanism is an important task in life science. YgfI is an uncharacterized LysR family transcription factor in Escherichia coli. To identify the function of YgfI, the genomic SELEX (gSELEX) screening was performed for YgfI regulation targets on the E. coli genome. In addition, regulatory and phenotypic analyses were performed. A total of 10 loci on the E. coli genome were identified as the regulatory targets of YgfI with the YgfI binding activity. These predicted YgfI target genes were involved in biofilm formation, hydrogen peroxide resistance, and antibiotic resistance, many of which were expressed in the stationary phase. The TCAGATTTTGC sequence was identified as an YgfI box in in vitro gel shift assay and DNase-I footprinting assays. RT-qPCR analysis in vivo revealed that the expression of YgfI increased in the stationary phase. Physiological analyses suggested the participation of YgfI in biofilm formation and an increase in the tolerability against hydrogen peroxide. In summary, we propose to rename ygfI as srsR (a stress-response regulator in stationary phase).


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438626

RESUMO

Genomic SELEX screening was performed to identify the binding sites of YiaU, an uncharacterized LysR family transcription factor, on the Escherichia coli K-12 genome. Five high-affinity binding targets of YiaU were identified, all of which were involved in the structures of the bacterial cell surface such as outer and inner membrane proteins, and lipopolysaccharides. Detailed in vitro and in vivo analyses suggest that YiaU activates these target genes. To gain insight into the effects of YiaU in vivo on physiological properties, we used phenotype microarrays, biofilm screening assays and the sensitivity against serum complement analysed using a yiaU deletion mutant or YiaU expression strain. Together, these results suggest that the YiaU regulon confers resistance to some antibiotics, and increases biofilm formation and complement sensitivity. We propose renaming YiaU as CsuR (regulator of cell surface).


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Biofilmes , Escherichia coli/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA