Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Heliyon ; 10(15): e35876, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170179

RESUMO

The increasing incidence of resistance extended spectrum-beta lactamase (ESBL) producing Klebsiella pneumonia become worldwide issue. The current study aimed to determine the genomic diversity of ESBL-producing K. pneumoniae in milk samples collected from cows with mastitis as well as their antibiotic sensitivity profiles and genetic identification in Peshawar, Pakistan. The california mastitis test (CMT) was initially used to verify the presence for mastitis in 700 collected milk samples. The molecular identification of the 16SrRNA gene confirmed 120/700 (17.14 %) propagation of K. pneumonia. Out of these isolates MDR ESBL-producing isolates were 60/120 (50 %). The lactose were found (M = 3.96 ± 0.28, SD = 2.19), followed by fats (M = 3.12 ± 0.11, SD = 0.90), protein (M = 5.97 ± 0.24, SD = 1.84), sodium (M = 55.74 ± 2.07, SD = 15.81), potassium (M = 138.5 ± 1.53, SD = 11.71), chloride (M = 0.74 ± 0.03, SD = 0.24), calcium (M = 10.27 ± 0.31, SD = 2.42), and chlorine (M = 2.80 ± 0.22, SD = 1.70), respectively. Amikacin (80 %), ceftazidime (71 %), and tetracycline (71 %) were shown to be the most effective antimicrobials against all of the isolates. The occurrence of the blaSHV gene was observed at 56.00 % whereas the blaTEM gene and blaCTX-M gene were 36.00 %, and 30.00 %. The distribution of blaCTX-M subgroup genes was followed by blaCTX-M-1 (38.00 %), blaCTX-M-9 (22.20 %), and blaCTX-M-15 (61.10 %). Co-occurrence of blaCTX-M+ blaSHV was (15.00 %), blaCTX-M+ blaTEM were (6.60 %), and blaSHV + blaTEM were (10.00 %), respectively. The inappropriate, prolonged and common use of antibiotics may apply selective pressure for propagation and the occurrence of resistant isolates.

2.
R Soc Open Sci ; 11(6): 231326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100175

RESUMO

The dynamics of coronavirus disease-19 (COVID-19) have been extensively researched in many settings around the world, but little is known about these patterns in Africa. A total of 7540 complete nucleotide genomes from 51 African nations were obtained and analysed using the National Center for Biotechnology Information and Global Initiative on Sharing Influenza Data databases to examine the genetic diversity and spread dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages circulating in Africa. Using various clade and lineage nomenclature schemes, we examined their diversity and used maximum parsimony inference methods to reconstruct the evolutionary hypotheses about the spread of the virus in Africa. According to this study, only 465 of the 2610 Pango lineages found to have existed in the world circulated in Africa three years after the COVID-19 pandemic, with five different lineages dominating at various points during the outbreak. We identified South Africa, Kenya and Nigeria as key sources of viral transmission among sub-Saharan African nations. These findings provide insights into the viral strains that circulate in Africa and their evolutionary patterns.

3.
ISME J ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141834

RESUMO

Marine eukaryotic phytoplankton are fundamental to the marine food web, yet the lack of reference genomes or just a single genome representing a taxon has led to an underestimation of their taxonomic, adaptive, and functional diversity. Here, we integrated strain isolation with metagenomic binning to recover genomes from the cosmopolitan picophytoplankton genus Bathycoccus, traditionally considered monospecific. Our recovery and analysis of 37 Bathycoccus genomes delineated their global genomic diversity and established four evolutionary clades (BI, BII, BIII, BIV). Our metagenomic abundance survey revealed well-differentiated ecological niches and distinct biogeographic distributions for each clade, predominantly shaped by temperature, salinity, and nutrient availability. Comparative genomics analyses further revealed clade-specific genomic traits, that underpin niche adaptation and contribute to the global prevalence of Bathycoccus. Our findings underscore temperature as a major driver of genome diversification in this genus, with clade divergences coinciding with major paleoclimatic events that influenced their contemporary thermal niches. Moreover, the unique enrichment of C2H2 zinc finger and ankyrin repeat gene families in polar-adapted clades suggests previously unrecognized cold-adaptation mechanisms in marine eukaryotic phytoplankton. Our study offers a comprehensive genomic landscape of this crucial eukaryotic picophytoplankton, providing insights into their microdiversity and adaptive evolution in response to changing environments.

4.
Plants (Basel) ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124263

RESUMO

Phytopathogenic bacteria of the genus Pectobacterium are responsible for several diseases that affect potato (Solanum tuberosum L.) production worldwide, including blackleg and tuber soft rot. These bacteria are highly diverse, with over 17 different species currently identified. However, some of the recently described species, such as Pectobacterium punjabense, are still poorly understood. In this study, we focused on P. punjabense isolates collected from diseased potato tubers in Russia in 2021. Whole-genome sequencing was used to characterise the genomic diversity of the pathogen and determine the biochemical profiles of the isolated bacteria. The ability of these isolates to cause soft rot symptoms was tested. A comparative assessment of the potential pathogenicity of the Pectobacterium isolates was conducted by infecting potato tubers and measuring the accumulation of biomass in a liquid medium during cultivation at different temperatures. A TaqMan qPCR assay was developed for the highly sensitive and specific characterisation of P. punjabense strains, which can be used in diagnostic systems. This is the first report on P. punjabense causing potato disease in the Russian Federation.

6.
Front Oncol ; 14: 1426558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974239

RESUMO

As the projected incidence and mortality of cancer in Sub-Saharan Africa (SSA) rises to epidemic proportions, it is imperative that more is done to identify the genomic differences and commonalities between patients of African and European ancestry to fulfil the promise of precision oncology. Here, we summarize the utility of precision oncology approaches, with a focus on comprehensive genomic profiling (CGP) and consolidate examples of national and international consortia that are driving the field forward. We describe the importance of genomic diversity and its relevance in cancer, and propose recommendations, success factors and desired outcomes for precision oncology consortia to adopt in SSA. Through this, we hope to catalyze the initiation of such projects and to contribute to improving cancer patient outcomes in the region.

7.
J Infect Dev Ctries ; 18(6): 851-861, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38990988

RESUMO

INTRODUCTION: In Senegal, molecular diagnosis was widely used for the detection and management of COVID-19 patients. However, genomic surveillance was very limited in the public sector. This study aimed to share the experience of a Senegalese public sector laboratory in response to the COVID-19 pandemic, and to describe the distribution of variants circulating in 2020 and 2021. METHODOLOGY: From July 2020 to December 2021, SARS-CoV-2 qRT-PCR was performed on nasopharyngeal samples from travelers and symptomatic patients at the Bacteriology and Virology Laboratory (LBV) of the Aristide le Dantec University Teaching Hospital. Samples with a cycle threshold (Ct) ≤ 30 were selected for whole-genome sequencing (WGS) using the Nanopore technology. In-house scripts were developed to study the spatial and temporal distribution of SARS-CoV-2 variants in Senegal, using our sequences and those retrieved from the GISAID database. RESULTS: Of 8,207 patients or travelers screened for SARS-CoV-2, 970 (11.8%) were positive and 386 had a Ct ≤ 30. WGS was performed on 133 samples. Concomitantly with high-quality sequences deposited in the GISAID database covering nine cities in Senegal in 2020 and 2021 (n = 1,539), we observed a high circulation of the 20A (B.1, B.1.416 and B.1.620) and 20B (B.1.1.420) lineages in 2020, while most of the samples belonged to Delta variants (AY34 and AY.34.1, 22%) in 2021. CONCLUSIONS: Despite its late involvement, COVID-19 diagnosis was routinely performed in LBV, but genomic characterization remained challenging. The genomic diversity of SARS-CoV-2 strains in Senegal reflected that observed worldwide during the first waves of the pandemic.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , Senegal/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma , Epidemiologia Molecular , Nasofaringe/virologia , Adulto , Masculino , Feminino , Filogenia , Pessoa de Meia-Idade
8.
J Infect Public Health ; 17(8): 102496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991412

RESUMO

BACKGROUND: Italy has been the first European Country dealing with SARS-CoV-2, whose diffusion on the territory has not been homogeneous. Among Italian regions, Sardinia represented one of the lowest incidence areas, likely due to its insular nature. Despite this, the impact of insularity on SARS-CoV-2 genetic diversity has not been comprehensively described. METHODS: In the present study, we performed the high throughput sequencing of 888 SARS-CoV-2 genomes collected in Sardinia during the first 23 months of pandemics. In addition, 1439 high-coverage SARS-CoV-2 genomes circulating in Sardinia along three years (December 2019 - January 2023) were downloaded from GISAID, for a total of 2327 viral sequences that were characterized in terms of phylogeny and genomic diversity. RESULTS: Overall, COVID-19 pandemic in Sardinia showed substantial differences with respect to the national panorama, with additional peaks of infections and uncommon lineages that reflects the national and regional policies of re-opening and the subsequent touristic arrivals. Sardinia has been interested by the circulation of at least 87 SARS-CoV-2 lineages, including some that were poorly represented at national and European level, likely linked to multiple importation events. The relative frequency of Sardinian SARS-CoV-2 lineages has been compared to other Mediterranean Islands, revealing a unique composition. CONCLUSIONS: The genomic diversity of SARS-CoV-2 in Sardinia has been shaped by a complex interplay of insular geography, low population density, and touristic arrivals, leading on the one side to the importation of lineages remaining rare at the national level, and resulting on the other side in the delayed entry of otherwise common variants.


Assuntos
COVID-19 , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Itália/epidemiologia , SARS-CoV-2/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Betacoronavirus/genética
9.
Ecol Evol ; 14(7): e70027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050658

RESUMO

Agaves are an outstanding arid-adapted group of species that provide a unique chance to study the influence of multiple potential factors (i.e., geological and ecological) on plant population structure and diversification in the heterogeneous environment of the Baja California Peninsula. However, relatively little is known about the phylogeography of the endemic agave species of this region. Herein, we used over 10,000 single-nucleotide polymorphisms (SNPs) and spatial data from the Agave aurea species complex (i.e., A. aurea ssp. aurea, A. aurea ssp. promontorii, and A. aurea var. capensis) to resolve genetic relationships within this complex and uncover fine-scale population structure, diversity patterns, and their potential underlying drivers. Analyses resolved low genetic structure within this complex, suggesting that A. aurea is more likely to represent several closely related populations than separate species or varieties/subspecies. We found that geographical and historical ecological characteristics-including precipitation, latitude, and past climatic fluctuations-have played an important role in the spatial distribution of diversity and structure in A. aurea. Finally, species distribution modeling results suggested that climate change will become critical in the extinction risk of A. aurea, with the northernmost population being particularly vulnerable. The low population genetic structure found in A. aurea is consistent with agave's life history, and it is probably related to continuity of distribution, relatively low habitat fragmentation, and dispersion by pollinators. Together, these findings have important implications for management and conservation programs in agave, such as creating and evaluating protected areas and translocating and augmentation of particular populations.

10.
Front Genet ; 15: 1382128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873117

RESUMO

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.

11.
mSystems ; 9(7): e0051624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934546

RESUMO

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites. IMPORTANCE: Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms.


Assuntos
Bacteroides fragilis , Variação Genética , Genoma Bacteriano , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidade , Bacteroides fragilis/isolamento & purificação , Humanos , Genoma Bacteriano/genética , Microbioma Gastrointestinal/genética , Filogenia , Infecções por Bacteroides/microbiologia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana/genética
12.
Heliyon ; 10(10): e31455, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807890

RESUMO

The Latvian Darkheaded is the only locally developed sheep breed. The breed was formed at the beginning of the 20th century by crossing local coarse-wooled sheep with the British Shropshire and Oxfordshire breeds. The breed was later improved by adding Ile-de-France, Texel, German blackheads, and Finnsheep to achieve higher prolificacy and better meat quality. Previous studies have reported the Latvian Darkheaded sheep to be closely related to Estonian and Lithuanian Blackface breeds, according to microsatellite data. To expand our knowledge of the genetic resources of the Latvian Darkheaded breed, we conducted a whole-genome resequencing analysis on 40 native sheep. The investigation showed that local sheep harbor genetic diversity levels similar to those observed among other improved breeds of European origin, including Charollais and Suffolk. Genome-wide nucleotide diversity (π) in Latvian Darkheaded sheep was 3.91 × 10-3, whereas the average observed heterozygosity among the 40 animals was 0.267 and 0.438 within the subsample of unrelated individuals. The Ne has rapidly decreased to 200 ten generations ago with a recent drop to Ne 73 four generations ago. However, inbreeding levels based on runs of homozygosity were, on average, low, with FROH ranging between 0.016 and 0.059. The analysis of the genomic composition of the breed confirmed shared ancestry with sheep of British origin, reflecting the history of the breed. Nevertheless, Latvian Darkheaded sheep were genetically separable. The contemporary Latvian Darkheaded sheep population is genetically diverse with a low inbreeding rate. However, further development of breed management programs is necessary to prevent an increase in inbreeding, loss of genetic diversity, and depletion of breed-specific genetic resources, ensuring the preservation of the native Latvian Darkheaded sheep.

13.
Twin Res Hum Genet ; 27(2): 85-96, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699821

RESUMO

TwinsMX registry is a national research initiative in Mexico that aims to understand the complex interplay between genetics and environment in shaping physical and mental health traits among the country's population. With a multidisciplinary approach, TwinsMX aims to advance our knowledge of the genetic and environmental mechanisms underlying ethnic variations in complex traits and diseases, including behavioral, psychometric, anthropometric, metabolic, cardiovascular and mental disorders. With information gathered from over 2800 twins, this article updates the prevalence of several complex traits; and describes the advances and novel ideas we have implemented such as magnetic resonance imaging. The future expansion of the TwinsMX registry will enhance our comprehension of the intricate interplay between genetics and environment in shaping health and disease in the Mexican population. Overall, this report describes the progress in the building of a solid database that will allow the study of complex traits in the Mexican population, valuable not only for our consortium, but also for the worldwide scientific community, by providing new insights of understudied genetically admixed populations.


Assuntos
Interação Gene-Ambiente , Sistema de Registros , Humanos , México/epidemiologia , Masculino , Feminino , Adulto , Doenças em Gêmeos/genética , Doenças em Gêmeos/epidemiologia , Pessoa de Meia-Idade , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia
14.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693487

RESUMO

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Assuntos
Aflatoxinas , Aspergillus flavus , Genoma Fúngico , Família Multigênica , Metabolismo Secundário , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo , Metabolismo Secundário/genética , Zea mays/microbiologia , Zea mays/genética , Estudo de Associação Genômica Ampla , Genes Fúngicos , Sequenciamento Completo do Genoma , Variação Genética
15.
Front Microbiol ; 15: 1304734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585707

RESUMO

Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.

16.
Ecol Evol ; 14(4): e11250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660467

RESUMO

The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.

17.
BMC Biol ; 22(1): 55, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448908

RESUMO

BACKGROUND: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS: We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS: Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.


Assuntos
Aclimatação , Genômica , Humanos , China , Alelos , Idioma
18.
BMC Biol ; 22(1): 59, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475771

RESUMO

BACKGROUND: Hmong-Mien (HM) speakers are linguistically related and live primarily in China, but little is known about their ancestral origins or the evolutionary mechanism shaping their genomic diversity. In particular, the lack of whole-genome sequencing data on the Yao population has prevented a full investigation of the origins and evolutionary history of HM speakers. As such, their origins are debatable. RESULTS: Here, we made a deep sequencing effort of 80 Yao genomes, and our analysis together with 28 East Asian populations and 968 ancient Asian genomes suggested that there is a strong genetic basis for the formation of the HM language family. We estimated that the most recent common ancestor dates to 5800 years ago, while the genetic divergence between the HM and Tai-Kadai speakers was estimated to be 8200 years ago. We proposed that HM speakers originated from the Yangtze River Basin and spread with agricultural civilization. We identified highly differentiated variants between HM and Han Chinese, in particular, a deafness-related missense variant (rs72474224) in the GJB2 gene is in a higher frequency in HM speakers than in others. CONCLUSIONS: Our results indicated complex gene flow and medically relevant variants involved in the HM speakers' evolution history.


Assuntos
Conexina 26 , Pool Gênico , Genética Populacional , Humanos , Povo Asiático , China , Genômica
19.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
20.
Evol Appl ; 17(2): e13617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343775

RESUMO

Genomic diversity is associated with the adaptive potential of a population and thereby impacts the extinction risk of a species during environmental change. However, empirical data on genomic diversity of populations before environmental perturbations are rare and hence our understanding of the impact of perturbation on diversity is often limited. We here assess genomic diversity utilising whole-genome resequencing data from all four species of the Lake Constance Alpine whitefish radiation. Our data covers a period of strong but transient anthropogenic environmental change and permits us to track changes in genomic diversity in all species over time. Genomic diversity became strongly reduced during the period of anthropogenic disturbance and has not recovered yet. The decrease in genomic diversity varies between 18% and 30%, depending on the species. Interspecific allele frequency differences of SNPs located in potentially ecologically relevant genes were homogenized over time. This suggests that in addition to the reduction of genome-wide genetic variation, the differentiation that evolved in the process of adaptation to alternative ecologies between species might have been lost during the ecological disturbance. The erosion of substantial amounts of genomic variation within just a few generations in combination with the loss of potentially adaptive genomic differentiation, both of which had evolved over thousands of years, demonstrates the sensitivity of biodiversity in evolutionary young adaptive radiations towards environmental disturbance. Natural history collections, such as the one used for this study, are instrumental in the assessment of genomic consequences of anthropogenic environmental change. Historical samples enable us to document biodiversity loss against the shifting baseline syndrome and advance our understanding of the need for efficient biodiversity conservation on a global scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA