Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genes (Basel) ; 15(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39336722

RESUMO

The main goal of this study was to pinpoint functional candidate genes associated with multiple economically important traits in Nellore cattle. After quality control, 1830 genomic regions sourced from 52 scientific peer-reviewed publications were used in this study. From these, a total of 8569 positional candidate genes were annotated for reproduction, 11,195 for carcass, 5239 for growth, and 3483 for morphological traits, and used in an over-representation analysis. The significant genes (adjusted p-values < 0.05) identified in the over-representation analysis underwent prioritization analyses, and enrichment analysis of the prioritized over-represented candidate genes was performed. The prioritized candidate genes were GFRA4, RFWD3, SERTAD2, KIZ, REM2, and ANKRD34B for reproduction; RFWD3, TMEM120A, MIEF2, FOXRED2, DUSP29, CARHSP1, OBI1, JOSD1, NOP58, and LOXL1-AS1 for the carcass; ANKRD34B and JOSD1 for growth traits; and no genes were prioritized for morphological traits. The functional analysis pinpointed the following genes: KIZ (plays a crucial role in spindle organization, which is essential in forming a robust mitotic centrosome), DUSP29 (involved in muscle cell differentiation), and JOSD1 (involved in protein deubiquitination, thereby improving growth). The enrichment of the functional candidate genes identified in this study highlights that these genes play an important role in the expression of reproduction, carcass, and growth traits in Nellore cattle.


Assuntos
Estudo de Associação Genômica Ampla , Animais , Estudo de Associação Genômica Ampla/métodos , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Fenótipo , Reprodução/genética
2.
Front Plant Sci ; 15: 1391452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988637

RESUMO

Early cassava storage root formation and bulking is a medium of escape that farmers and processors tend to adopt in cases of abiotic and biotic stresses like drought, flood, and destruction by domestic animals. In this study, 220 cassava genotypes from the International Institute of Tropical Agriculture (IITA), National Root Crops Research Institute (NRCRI), International Center for Tropical Agriculture (CIAT), local farmers (from farmer's field), and NextGen project were evaluated in three locations (Umudike, Benue, and Ikenne). The trials were laid out using a split plot in a randomized incomplete block design (alpha lattice) with two replications in 2 years. The storage roots for each plant genotype were sampled or harvested at 3, 6, 9, and 12 month after planting (MAP). All data collected were analyzed using the R-statistical package. The result showed moderate to high heritability among the traits, and there were significant differences (p< 0.05) among the performances of the genotypes. The genome-wide association mapping using the BLINK model detected 45 single-nucleotide polymorphism (SNP) markers significantly associated with the four early storage root bulking and formation traits on Chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 17, and 18. A total of 199 putative candidate genes were found to be directly linked to early storage root bulking and formation. The functions of these candidate genes were further characterized to regulate i) phytohormone biosynthesis, ii) cellular growth and development, and iii) biosynthesis of secondary metabolites for accumulation of starch and defense. Genome-wide association study (GWAS) also revealed the presence of four pleiotropic SNPs, which control starch content, dry matter content, dry yield, and bulking and formation index. The information on the GWAS could be used to develop improved cassava cultivars by breeders. Five genotypes (W940006, NR090146, TMS982123, TMS13F1060P0014, and NR010161) were selected as the best early storage root bulking and formation genotypes across the plant age. These selected cultivars should be used as sources of early storage root bulking and formation in future breeding programs.

3.
Fish Shellfish Immunol ; 146: 109421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325591

RESUMO

In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.


Assuntos
Carpas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Carpas/genética
4.
Genome ; 67(2): 31-42, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962065

RESUMO

Animal domestication, climate changes over time, and artificial selection have played significant roles in shaping the genome structure of various animal species, including cattle. These processes have led to the emergence of several indigenous cattle breeds with distinct genetic characteristics. This study focused on unraveling the genetic diversity and identifying candidate genomic regions in eight indigenous cattle breeds of Iran. The data consisted of ∼777 962 single nucleotide polymorphisms (SNPs) of 89 animals from Iranian indigenous cattle scattered throughout the country. We employed various methods, including integrated haplotype score, FST, and cross-population composite likelihood ratio, to conduct a genome scan for detecting selection signals within and between cattle populations. Average observed heterozygosity across the populations was 0.36, with a range of 0.32-0.40. In addition, negative and low rates of inbreeding (FIS) in the populations were observed. The genome-wide analysis revealed several genomic regions that harbored candidate genes associated with production traits (e.g., MFSD1, TYW5, ADRB2, BLK, and CRTC3), adaptation to local environmental constraints (CACNA2D1, CXCL3, and GRO1), and coat color (DYM). Finally, the study of the reported quantitative trait loci (QTL) regions in the cattle genome demonstrated that the identified regions were associated with QTL related to important traits such as milk composition, body weight, daily gain, feed conversion, and residual feed intake. Overall, this study contributes to a better understanding of the genetic diversity and potential candidate genes underlying important traits in Iranian indigenous cattle breeds, which can inform future breeding and conservation efforts.


Assuntos
Genômica , Seleção Genética , Bovinos/genética , Animais , Irã (Geográfico) , Genômica/métodos , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
5.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834216

RESUMO

Only a small number of infected people are highly susceptible to schistosomiasis, showing high levels of infection or severe liver fibrosis. The susceptibility to schistosome infection is influenced by genetic background. To assess the genetic basis of susceptibility and identify the chromosomal regions involved, a backcross strategy was employed to generate high variation in schistosomiasis susceptibility. This strategy involved crossing the resistant C57BL/6J mouse strain with the susceptible CBA/2J strain. The resulting F1 females (C57BL/6J × CBA/2J) were then backcrossed with CBA/2J males to generate the backcross (BX) cohort. The BX mice exhibited a range of phenotypes, with disease severity varying from mild to severe disease, lacking a fully resistant group. We observed four levels of infection intensity using cluster and principal component analyses and K-means based on parasitological, pathological, and immunological trait measurements. The mice were genotyped with 961 informative SNPs, leading to the identification of 19 new quantitative trait loci (QTL) associated with parasite burden, liver lesions, white blood cell populations, and antibody responses. Two QTLs located on chromosomes 15 and 18 were linked to the number of granulomas, liver lesions, and IgM levels. The corresponding syntenic human regions are located in chromosomes 8 and 18. None of the significant QTLs had been reported previously.


Assuntos
Neoplasias Hepáticas , Esquistossomose mansoni , Esquistossomose , Humanos , Masculino , Feminino , Camundongos , Animais , Esquistossomose mansoni/genética , Camundongos Endogâmicos C57BL , Modelos Genéticos , Schistosoma mansoni/genética , Camundongos Endogâmicos CBA , Suscetibilidade a Doenças , Genômica
6.
Epigenetics Chromatin ; 16(1): 34, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743474

RESUMO

BACKGROUND: Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants. METHODS: Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants. RESULTS: The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms. CONCLUSIONS: Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.


Assuntos
Poluentes Ambientais , Humanos , Animais , Camundongos , Poluentes Ambientais/toxicidade , Sequenciamento de Cromatina por Imunoprecipitação , Epigenômica , Genômica , Epigênese Genética
7.
Heliyon ; 9(8): e18731, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576216

RESUMO

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.

8.
AIMS Microbiol ; 9(3): 570-590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649799

RESUMO

Shiga toxin-producing E. coli (STEC) are diarrheagenic strains that can cause bloody diarrhea and hemolytic-uremic syndrome. Their main virulence factor, the Shiga toxin (Stx), is encoded by phages integrated into the bacterial chromosome. Stx phages are widely diverse and carry many genes with limited or unknown function. As the toxin subtype Stx2a is associated with highly pathogenic strains, this study was mainly focused on the characterization of the stx flanking region of Stx2a phages. Of particular interest was a sialate O-acetylesterase (NanS-p), which has been described previously to be encoded downstream stx in some phage genomes and may confer a growth advantage for STEC. Complete DNA sequences of Stx2a phages and prophages were retrieved from the GenBank database, and the genomic regions from anti-terminator Q to holin S genes were bioinformatically analyzed. Predicted NanSp sequences from phages encoding other Stx subtypes were also studied. Additionally, expression of nanS-p was quantified by qPCR in strains selected from our laboratory collection. The analysis of Stx2a phage genomes showed that all carried the Q, stx2a, nanS-p and S genes, but with allele diversity and other sequence differences. In particular, sequence differences were detected in each of the three domains of NanS-p esterases encoded by Stx2a phages and other Stx phages; however, nanS-p was not identified in the Stx2e, Stx2f and Stx2g phages analyzed. The expression of nanS-p increased in most stx2a-positive strains under phage inducing conditions, as was previously shown for stx2a. As the present work showed diversity at the Q-S region among Stx phages, and particularly in the encoded NanS-p enzyme, future studies will be necessary to evaluate if NanS-p variants differ in their activity and to assess the impact of the absence of nanS-p in certain Stx phages.

9.
Front Plant Sci ; 14: 1214907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534296

RESUMO

Aflatoxin (AF) contamination, caused by Aspergillus flavus, compromises the food safety and marketability of commodities, such as maize, cotton, peanuts, and tree nuts. Multigenic inheritance of AF resistance impedes conventional introgression of resistance traits into high-yielding commercial maize varieties. Several AF resistance-associated quantitative trait loci (QTLs) and markers have been reported from multiple biparental mapping and genome-wide association studies (GWAS) in maize. However, QTLs with large confidence intervals (CI) explaining inconsistent phenotypic variance limit their use in marker-assisted selection. Meta-analysis of published QTLs can identify significant meta-QTLs (MQTLs) with a narrower CI for reliable identification of genes and linked markers for AF resistance. Using 276 out of 356 reported QTLs controlling resistance to A. flavus infection and AF contamination in maize, we identified 58 MQTLs on all 10 chromosomes with a 66.5% reduction in the average CI. Similarly, a meta-analysis of maize genes differentially expressed in response to (a)biotic stresses from the to-date published literature identified 591 genes putatively responding to only A. flavus infection, of which 14 were significantly differentially expressed (-1.0 ≤ Log2Fc ≥ 1.0; p ≤ 0.05). Eight MQTLs were validated by their colocalization with 14 A. flavus resistance-associated SNPs identified from GWAS in maize. A total of 15 genes were physically close between the MQTL intervals and SNPs. Assessment of 12 MQTL-linked SSR markers identified three markers that could discriminate 14 and eight cultivars with resistance and susceptible responses, respectively. A comprehensive meta-analysis of QTLs and differentially expressed genes led to the identification of genes and makers for their potential application in marker-assisted breeding of A. flavus-resistant maize varieties.

10.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512888

RESUMO

There is currently a limited understanding of the complex response of fungal microbiota diversity to organic fertigation. In this work, a 2-year field trial with organic tomato crops in a soil previously amended with fresh sheep manure was conducted. Two hypotheses were compared: (i) fertigation with organic liquid fertilizers versus (ii) irrigation with water. At the end of both years, soils were analyzed for physical-chemical parameters and mycobiome variables. Plate culture and DNA metabarcoding methods were performed in order to obtain a detailed understanding of soil fungal communities. Fertigation did not increase any of the physical-chemical parameters. Concerning soil fungal communities, differences were only found regarding the identification of biomarkers. The class Leotiomycetes and the family Myxotrichaceae were identified as biomarkers in the soil fungal community analyzed by means of DNA metabarcoding of the "fertigation" treatment at the end of Year 1. The Mortierella genus was detected as a biomarker in the "water" treatment, and Mucor was identified in the "fertigation" treatment in the cultivable soil fungi at the end of Year 2. In both years, tomato yield and fruit quality did not consistently differ between treatments, despite the high cost of the fertilizers added through fertigation.

11.
Poult Sci ; 102(8): 102720, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327746

RESUMO

Skin color in chickens is an economically important trait that determines the first impression of a consumer toward a broiler and can ultimately affect consumer choice in the market. Therefore, identification of genomic regions associated with skin color is crucial for increasing the sales value of chickens. Although previous studies have attempted to reveal the genetic markers associated with the skin coloration in chickens, most were limited to investigations of candidate genes, such as melanin-related genes, and focused on case/control studies based on a single or small population. In this study, we performed a genome-wide association study (GWAS) on 770 F2 intercrosses produced by an experimental population of 2 chicken breeds, namely Ogye and White Leghorns, with different skin colors. The GWAS demonstrated that the L* value among the 3 skin color traits is highly heritable, and the genomic regions located on 2 chromosomes (20 and Z) were detected to harbor SNPs significantly associated with the skin color trait, accounting for most of the total genetic variance. Particular genomic regions spanning a ∼2.94 Mb region on GGA Z and a ∼3.58 Mb region on GGA 20 were significantly associated with skin color traits, and in these regions, certain candidate genes, including MTAP, FEM1C, GNAS, and EDN3, were found. Our findings could help elucidate the genetic mechanisms underlying chicken skin pigmentation. Furthermore, the candidate genes can be used to provide a valuable breeding strategy for the selection of specific chicken breeds with ideal skin coloration.


Assuntos
Estudo de Associação Genômica Ampla , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
MethodsX ; 10: 102223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251650

RESUMO

Bovine tuberculosis is a prevalent zoonotic disease that causes high risks for production animals, dairy producers and consumers, together with significant economic losses. Thus, methods for easy, fast and specific detection of Mycobacterium bovis in small and medium-sized livestock under field conditions are very required. In this work, a Loop-Mediated Isothermal Amplification LAMP-PCR targeting the Region of Difference 12 (RD12) of M. bovis genome was designed for the purpose of identification. A set of six primers designed for the isothermal amplification of five different genomic fragments led to the specific identification of M. bovis from other mycobacterial species. A basic colorimetric reaction was clearly observed at first sight under natural light, indicating positive identification of M. bovis in a maximum of 30 min of isothermal amplification at 65 °C. The limit of detection was near 50 fg of M. bovis genomic DNA, corresponding approximately to 10 copies of the genome. •The proposed LAMP-PCR amplification of M. bovis genomic DNA might be performed by untrained laboratory personnel.•Specific identification of M. bovis LAMP is possible in 30 min at 65.. C using a simple water bath.•The basic colorimetric reaction for M. bovis identification could be observed with the naked eye under natural light.

13.
Front Plant Sci ; 14: 1092992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021301

RESUMO

Identifying genomic regions for root traits in bread wheat can help breeders develop climate-resilient and high-yielding wheat varieties with desirable root traits. This study used the recombinant inbred line (RIL) population of Synthetic W7984 × Opata M85 to identify quantitative trait loci (QTL) for different root traits such as rooting depth (RD), root dry mass (RM), total root length (RL), root diameter (Rdia) and root surface areas (RSA1 for coarse roots and RSA2 for fine roots) under controlled conditions in a semi-hydroponic system. We detected 14 QTL for eight root traits on nine wheat chromosomes; we discovered three QTL each for RD and RSA1, two QTL each for RM and RSA2, and one QTL each for RL, Rdia, specific root length and nodal root number per plant. The detected QTL were concentrated on chromosome groups 5, 6 and 7. The QTL for shallow RD (Q.rd.uwa.7BL: Xbarc50) and high RM (Q.rm.uwa.6AS: Xgwm334) were validated in two independent F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade, respectively. Genotypes containing negative alleles for Q.rd.uwa.7BL had 52% shallower RD than other Synthetic W7984 × Chara population lines. Genotypes with the positive alleles for Q.rm.uwa.6AS had 31.58% higher RM than other Opata M85 × Cascade population lines. Further, we identified 21 putative candidate genes for RD (Q.rd.uwa.7BL) and 13 for RM (Q.rm.uwa.6AS); TraesCS6A01G020400, TraesCS6A01G024400 and TraesCS6A01G021000 identified from Q.rm.uwa.6AS, and TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200 identified from Q.rd.uwa.7BL encoded important proteins for root traits. We found germin-like protein encoding genes in both Q.rd.uwa.7BL and Q.rm.uwa.6AS regions. These genes may play an important role in RM and RD improvement. The identified QTL, especially the validated QTL and putative candidate genes are valuable genetic resources for future root trait improvement in wheat.

14.
Genes (Basel) ; 14(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36980905

RESUMO

The identification of the dwarf phenotype in chicken is based on body weight, height, and shank length, leaving the differentiation between dwarf and small breeds ambiguous. The aims of the present study were to characterize the sequence variations associated with the dwarf phenotype in three Italian chicken breeds and to investigate the genes associated with their phenotype. Five hundred and forty-one chickens from 23 local breeds (from 20 to 24 animals per breed) were sampled. All animals were genotyped with the 600 K chicken SNP array. Three breeds were described as "dwarf", namely, Mericanel della Brianza (MERI), Mugellese (MUG), and Pepoi (PPP). We compared MERI, MUG, and PPP with the four heaviest breeds in the dataset by performing genome-wide association studies. Results showed significant SNPs associated with dwarfism in the MERI and MUG breeds, which shared a candidate genomic region on chromosome 1. Due to this similarity, MERI and MUG were analyzed together as a meta-population, observing significant SNPs in the LEMD3 and HMGA2 genes, which were previously reported as being responsible for dwarfism in different species. In conclusion, MERI and MUG breeds seem to share a genetic basis of dwarfism, which differentiates them from the small PPP breed.


Assuntos
Galinhas , Nanismo , Animais , Galinhas/genética , Estudo de Associação Genômica Ampla , Genômica , Itália , Nanismo/genética , Nanismo/veterinária
15.
Cureus ; 15(2): e34743, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36913212

RESUMO

Background  Rheumatoid arthritis (RA) is an autoimmune disease associated with endothelial dysfunction (ED) and vascular morbidity. The study aimed to use ultrasound to assess the relationships of lp13.3 genomic region-rs646776 polymorphism with ED and subclinical cardiovascular disease (CVD) in patients with RA from the Suez Canal region in Egypt. Results This case-control study included 66 patients with RA and 66 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism showed that the genotype frequencies for lp13.3 genomic region-rs646776 polymorphism in the RA group were 62.1% (n = 41), 34.8% (n = 23), and 3% (n = 2) for the AA, AG, and GG genotypes, respectively. The prevalence of the G allele was higher in the RA group than in the control group (20.5% and 7.6%, respectively; p < 0.01). Furthermore, ED was more prevalent in G allele carriers than in A allele carriers, suggesting a greater probability of ED and CVD in patients with RA with the GG genotype than in those with other genotypes. Conclusions This study indicated the validity of ultrasound in detecting the association between lp13.3 genomic region-rs646776 polymorphism and ED in Egyptian patients with RA. These findings could help identify high-risk patients with RA who may benefit from active treatment to help prevent CVD.

16.
Cancer Med ; 12(5): 5859-5873, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366788

RESUMO

BACKGROUND: The 8q24 locus is enriched in cancer-associated polymorphisms and, despite containing relatively few protein-coding genes, it hosts the MYC oncogene and other genetic elements connected to tumorigenesis, including microRNAs (miRNAs). Research on miRNAs may provide insights into the transcriptomic regulation of this multiple cancer-associated region. MATERIAL AND METHODS: We profiled all miRNAs located in the 8q24 region in 120 colorectal cancer (CRC) patients and 80 controls. miRNA profiling was performed on cancer/non-malignant adjacent mucosa, stool, and plasma extracellular vesicles (EVs), and the results validated with The Cancer Genome Atlas (TCGA) data. To verify if the 8q24-annotated miRNAs altered in CRC were dysregulated in other cancers and biofluids, we evaluated their levels in bladder cancer (BC) cases from the TCGA dataset and in urine and plasma EVs from a set of BC cases and healthy controls. RESULTS: Among the detected mature miRNAs in the region, 12 were altered between CRC and adjacent mucosa (adj. p < 0.05). Five and four miRNAs were confirmed as dysregulated in the CRC and BC TCGA dataset, respectively. A co-expression analysis of tumor/adjacent tissue data from the CRC group revealed a correlation between the dysregulated miRNAs and CRC-related genes (PVT1 and MYC) annotated in 8q24 region. miR-30d-5p and miR-151a-3p, altered in CRC tissue, were also dysregulated in stool of CRC patients and urine of BC cases, respectively. Functional enrichment of dysregulated miRNA target genes highlighted terms related to TP53-mediated cell cycle control. CONCLUSIONS: Altered expression of 8q24-annotated miRNAs may be relevant for the initiation and/or progression of cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo
17.
Anim Genet ; 54(2): 216-219, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511585

RESUMO

In order to identify important genetic markers associated with backfat thickness, skin thickness and carcass length, we first constructed Large White × Tongcheng (Chinese local breed), an advanced generation intercross population, then performed a genome-wide association study (GWAS) to reveal the key genomic region associated with these traits through whole genome sequencing. The GWAS results of backfat thickness, skin thickness and carcass length showed that all the most significant SNPs associated with these three traits were located on SSC7, and that 14.9, 27.0 and 21.1% of phenotypic variances were explained by these three SNPs, respectively. Through linkage disequilibrium analysis, we found that a 66.9 kb (30.23-30.31 Mb) genetic region was overlapped among these three traits, and that NUDT3 and HMGA1 were identified as major candidate genes for backfat thickness and carcass length, and GRM4 as a potential candidate gene for skin thickness. In addition, 13 highly linked SNPs significantly associated with the three traits were also identified in overlapped region, and three completely linked SNPs formed two haplotypes Q and q. The backfat thickness of individuals with the qq genotype was significantly lower than that of individuals with the QQ genotype, but their carcass length and skin thickness were significantly higher than those with the QQ genotype. Our detected candidate genes and SNPs will provide the foundation for genetic improvement of these three traits.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Genótipo , Fenótipo , Genômica/métodos , Polimorfismo de Nucleotídeo Único
18.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423152

RESUMO

Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined. In addition, for MCPyV, the expression of transcripts for the LT gene was investigated. JCPyV, BKPyV and MCPyV's presence was reported, whereas HPyV6, HPyV7 and QPyV were not detected in any sample. Co-infection patterns of JCPyV, BKPyV and MCPyV were found. Archetype-like NCCRs were observed with some point mutations in plasma samples positive for JCPyV and BKPyV. The VP1 region was found to be highly conserved among these subjects. LT did not show mutations causing stop codons, and LT transcripts were expressed in MCPyV positive samples. A significant correlation between HPyVs' detection and a low level of CD4+ was reported. In conclusion, HPyV6, HPyV7 and QPyV seem to not have a clinical relevance in HIV-1 patients, whereas further studies are warranted to define the clinical importance of JCPyV, BKPyV and MCPyV DNA detection in these subjects.


Assuntos
Líquidos Corporais , Soropositividade para HIV , HIV-1 , Poliomavírus das Células de Merkel , Polyomavirus , Humanos , HIV-1/genética , Plasma , Genômica
19.
Microbiol Spectr ; 10(6): e0262222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409071

RESUMO

Huanglongbing (HLB; greening disease), caused by Candidatus Liberibacter asiaticus (CLas), is the most damaging citrus disease worldwide. The disease has spread throughout the citrus-producing regions of Guangxi, Guangdong, Fujian, and others in China. A total of 1,788 HLB-like symptomatic or asymptomatic samples were collected from the Guangxi and Fujian provinces of China to decipher the genetic diversity of CLas and its correlation with geographic region and host plant. The disease was the most severe in orange and the least in pomelo. CLas bacteria associated with the specific geographical and citrus variety infected more than 50% of the HLB-like symptomatic samples. We identified 6,286 minor variations by comparing 35 published CLas genomes and observed a highly heterogeneous variation distribution across the genome, including four highly diverse nonprophages and three prophage segments. Four hypervariable genomic regions (HGRs) were identified to determine the genetic diversity among the CLas isolates collected from Guangxi and Fujian, China. A phylogenetic tree constructed from four HGRs showed that 100 CLas strains could be separated into four distinct clades. Ten new strains with high variations of prophage regions were identified in the mandarin and tangerine grown in new plantation areas of Guangxi. Characterizing these HGR variations in the CLas bacteria may provide insight into their evolution and adaptation to host plants and insects. IMPORTANCE The hypervariable genomic regions derived from 35 published CLas genomes were used to decipher the genetic diversity of CLas strains and identify 10 new strains with high variations in prophage regions. Characterizing these variations in the CLas bacteria might provide insight into their evolution and adaptation to host plants and insects in China.


Assuntos
Liberibacter , Rhizobiaceae , Animais , Filogenia , Rhizobiaceae/genética , China , Insetos , Genômica , Variação Genética , Doenças das Plantas/microbiologia
20.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35959979

RESUMO

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.


Assuntos
Genômica , Software , Cromatina , Genoma Humano , Humanos , Anotação de Sequência Molecular , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA