Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39119355

RESUMO

Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.

3.
Bioessays ; : e2400037, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030821

RESUMO

Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.

4.
Trends Cell Biol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38910038

RESUMO

To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.

5.
Nutrients ; 16(12)2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931171

RESUMO

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transduction.


Assuntos
Cisplatino , Dano ao DNA , Neoplasias Ovarianas , Serina-Treonina Quinases TOR , Taurina , Proteína Supressora de Tumor p53 , Taurina/farmacologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Feminino , Neoplasias Ovarianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Cisplatino/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antineoplásicos/farmacologia
6.
Front Oncol ; 14: 1227151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756663

RESUMO

Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.

7.
Front Immunol ; 15: 1395035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680493

RESUMO

Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Apoptose , Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Animais , Imunidade Inata , Transcrição Gênica , Inflamação/imunologia , Transdução de Sinais
8.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612854

RESUMO

Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis-a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Mitomicina/farmacologia , Proteômica , Dano ao DNA
9.
Mol Cancer ; 23(1): 21, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263180

RESUMO

BACKGROUND: The ATM kinase constitutes a master regulatory hub of DNA damage and activates the p53 response pathway by phosphorylating the MDM2 protein, which develops an affinity for the p53 mRNA secondary structure. Disruption of this interaction prevents the activation of the nascent p53. The link of the MDM2 protein-p53 mRNA interaction with the upstream DNA damage sensor ATM kinase and the role of the p53 mRNA in the DNA damage sensing mechanism, are still highly anticipated. METHODS: The proximity ligation assay (PLA) has been extensively used to reveal the sub-cellular localisation of the protein-mRNA and protein-protein interactions. ELISA and co-immunoprecipitation confirmed the interactions in vitro and in cells. RESULTS: This study provides a novel mechanism whereby the p53 mRNA interacts with the ATM kinase enzyme and shows that the L22L synonymous mutant, known to alter the secondary structure of the p53 mRNA, prevents the interaction. The relevant mechanistic roles in the DNA Damage Sensing pathway, which is linked to downstream DNA damage response, are explored. Following DNA damage (double-stranded DNA breaks activating ATM), activated MDMX protein competes the ATM-p53 mRNA interaction and prevents the association of the p53 mRNA with NBS1 (MRN complex). These data also reveal the binding domains and the phosphorylation events on ATM that regulate the interaction and the trafficking of the complex to the cytoplasm. CONCLUSION: The presented model shows a novel interaction of ATM with the p53 mRNA and describes the link between DNA Damage Sensing with the downstream p53 activation pathways; supporting the rising functional implications of synonymous mutations altering secondary mRNA structures.


Assuntos
Polinucleotídeo 5'-Hidroxiquinase , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Proteína Supressora de Tumor p53 , Dano ao DNA , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia
10.
Transl Stroke Res ; 15(1): 165-178, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633794

RESUMO

Stroke remains a leading cause of mortality; however, available therapeutics are limited. The study of ischemic tolerance, in paradigms such as resveratrol preconditioning (RPC), provides promise for the development of novel prophylactic therapies. The heavily oxidative environment following stroke promotes poly-ADP-ribose polymerase 1 (PARP1)-overactivation and parthanatos, both of which are major contributors to neuronal injury. In this study, we tested the hypothesis that RPC instills ischemic tolerance through decreasing PARP1 overexpression and parthanatos following in vitro and in vivo cerebral ischemia. To test this hypothesis, we utilized rat primary neuronal cultures (PNCs) and middle cerebral artery occlusion (MCAO) in the rat as in vitro and in vivo models, respectively. RPC was administered 2 days preceding ischemic insults. RPC protected PNCs against oxygen and glucose deprivation (OGD)-induced neuronal loss, as well as increases in total PARP1 protein, implying protection against PARP1-overactivation. Twelve hours following OGD, we observed reductions in NAD+/NADH as well as an increase in AIF nuclear translocation, but RPC ameliorated NAD+/NADH loss and blocked AIF nuclear translocation. MCAO in the rat induced AIF nuclear translocation in the ischemic penumbra after 24 h, which was ameliorated with RPC. We tested the hypothesis that RPC's neuroprotection was instilled through long-term downregulation of nuclear PARP1 protein. RPC downregulated nuclear PARP1 protein for at least 6 days in PNCs, likely contributing to RPC's ischemic tolerance. This study describes a novel mechanism by which RPC instills prophylaxis against ischemia-induced PARP1 overexpression and parthanatos, through a long-term reduction of nuclear PARP1 protein.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Ratos , Animais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Resveratrol/farmacologia , NAD , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Infarto Cerebral , Morte Celular/fisiologia
11.
Mol Cell Proteomics ; 23(1): 100695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101750

RESUMO

In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ubiquitinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Reparo do DNA
12.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067190

RESUMO

Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Mutagênicos , Animais , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo
13.
Bio Protoc ; 13(21): e4872, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37969749

RESUMO

Cellular sensitivity is an approach to inhibit the growth of certain cells in response to any non-permissible conditions, as the presence of a cytotoxic agent or due to changes in growth parameters such as temperature, salt, or media components. Sensitivity tests are easy and informative assays to get insight into essential gene functions in various cellular processes. For example, cells having any functionally defective genes involved in DNA replication exhibit sensitivity to non-permissive temperatures and to chemical agents that block DNA replication fork movement. Here, we describe a sensitivity test for multiple strains of Saccharomyces cerevisiae and Candida albicans of diverged genetic backgrounds subjected to several genotoxic chemicals simultaneously. We demonstrate it by testing the sensitivity of DNA polymerase defective yeast mutants by using spot analysis combined with colony forming unit (CFU) efficiency estimation. The method is very simple and inexpensive, does not require any sophisticated equipment, can be completed in 2-3 days, and provides both qualitative and quantitative data. We also recommend the use of this reliable methodology for assaying the sensitivity of these and other fungal species to antifungal drugs and xenobiotic factors.

14.
Bio Protoc ; 13(21): e4869, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37969755

RESUMO

Fork stability is key to genome DNA duplication and genetic integrity. Long non-coding RNAs (LncRNAs) may play vital roles in fork stabilization and chromatin remodeling. Existing techniques such as NCC-RNA sequencing are useful to identify LncRNAs on nascent chromatin DNA. However, there is still a lack of methods for LncRNAs purification directly from replicative forks, hindering a deep understanding of the functions of LncRNAs in fork regulation. Here, we provide a step-by-step protocol named iROND (isolate RNAs on nascent DNA). iROND was developed and modified from iPOND, a well-known method for purifying fork-associated proteins. iROND relies on click chemistry reaction of 5'-ethynyl-2'-deoxyuridine (EdU)-labeled forks and biotin. After streptavidin pull down, fork-associated LncRNAs and proteins are purified simultaneously. iROND is compatible with downstream RNA sequencing, qPCR confirmation, and immunoblotting. Integrated with functional methods such as RNA fluorescent in situ hybridization (RNA FISH) and DNA fiber assay, it is feasible to screen fork-binding LncRNAs in defined cell lines and explore their functions. In summary, we provide a purification pipeline of fork-associated LncRNAs. iROND is also useful for studying other types of fork-associated non-coding RNAs. Key features • Purify long non-coding RNAs (LncRNAs) directly from replication forks. • Connects to RNA sequencing for screening easily. • Allows testing various genotoxic stress responses. • Provides LncRNA candidate list for downstream functional research.

15.
Mutat Res Rev Mutat Res ; 792: 108467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37657754

RESUMO

The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Transcriptoma/genética , RNA , Apoptose/genética , Dano ao DNA/genética
16.
Cells ; 12(16)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626888

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive. In this study, we inactivated in mice the enzymatic activity of PARP1 by truncating its C-terminus that is essential for ART catalysis (PARP1ΔC/ΔC, designated as PARP1-ΔC). The mutation caused embryonic lethality between embryonic day E8.5 and E13.5, in stark contrast to PARP1 complete knockout (PARP1-/-) mice, which are viable. Embryonic stem (ES) cell lines can be derived from PARP1ΔC/ΔC blastocysts, and these mutant ES cells can differentiate into all three germ layers, yet, with a high degree of cystic structures, indicating defects in epithelial cells. Intriguingly, PARP1-ΔC protein is expressed at very low levels compared to its full-length counterpart, suggesting a selective advantage for cell survival. Noticeably, PARP2 is particularly elevated and permanently present at the chromatin in PARP1-ΔC cells, indicating an engagement of PARP2 by non-enzymatic PARP1 protein at the chromatin. Surprisingly, the introduction of PARP1-ΔC mutation in adult mice did not impair their viability; yet, these mutant mice are hypersensitive to alkylating agents, similar to PARP1-/- mutant mice. Our study demonstrates that the catalytically inactive mutant of PARP1 causes the developmental block, plausibly involving PARP2 trapping.


Assuntos
Cromatina , Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Poli(ADP-Ribose) Polimerase-1/genética , Blastocisto , Catálise
17.
Genetics ; 225(1)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37440469

RESUMO

In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dano ao DNA , Regulação Fúngica da Expressão Gênica , Inositol/metabolismo , Inositol/farmacologia , Fosfolipídeos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Fatores de Transcrição/genética
18.
Fungal Biol ; 127(7-8): 1209-1217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495310

RESUMO

Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.


Assuntos
Metarhizium , Vitamina K 3 , Esporos Fúngicos , Vitamina K 3/metabolismo , Raios Ultravioleta , Hipóxia/metabolismo
19.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175941

RESUMO

A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.


Assuntos
Mitocôndrias , Estresse Oxidativo , Camundongos , Animais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proliferação de Células , Serina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Mamíferos/metabolismo
20.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047754

RESUMO

HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Atorvastatina/farmacologia , Mitomicina/farmacologia , Células Endoteliais , Reparo do DNA , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA