Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Forensic Sci Int Genet ; 71: 103051, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670007

RESUMO

PURPOSE: Thoracic aortic dissection (TAD) is a life-threatening cardiovascular disease that often results in sudden cardiac death (SCD). However, the genetic characteristics of individuals with TAD confirmed at autopsy have been rarely studied. Our objective was to determine the prevalence of pathogenic variants in TAD-associated genes in a cohort of sporadic deaths resulting from spontaneous rupture of TAD and identify relevant genotype-phenotype relationships in Han Chinese population. METHODS: We included sixty-one consecutive sporadic decedents whose primary cause of death was spontaneous rupture of TAD, and performed a whole exome sequencing based strategy comprising 26 known TAD-associated genes. RESULTS: We identified 7 pathogenic or likely pathogenic (P/LP) variants in 7 cases (11.48 %) and 22 variants of uncertain significance (VUS) in 22 cases (36.07 %). The FBN1 gene was found to be the major disease-causing gene. Notably, TAD decedents with P/LP variant exhibited significantly earlier mortality. Moreover, we reported for the first time that TAD decedents with P/LP variant had a shorter diagnosis and treatment time. CONCLUSION: Our study investigated the genetic characteristics of TAD individuals confirmed until autopsy in Han Chinese population. The findings enhanced the understanding of the genetic underpinnings of TAD and have significant implications for clinical management and forensic investigations.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Sequenciamento do Exoma , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adipocinas , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/mortalidade , Dissecção Aórtica/genética , Dissecção Aórtica/mortalidade , Ruptura Aórtica/genética , China , Estudos de Coortes , Dissecção da Aorta Torácica , População do Leste Asiático/genética , Fibrilina-1/genética , Ruptura Espontânea/genética
3.
Plant Biotechnol J ; 22(5): 1312-1324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213076

RESUMO

Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Cor , Estudo de Associação Genômica Ampla , Betalaínas/metabolismo , Genômica , Sementes/genética
4.
EFSA J ; 21(Suppl 1): e211003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38047129

RESUMO

Quantitative microbiological risk assessment (QMRA) methodology aims to estimate and describe the transmission of pathogenic microorganisms from animals and food to humans. In microbiological literature, the availability of whole genome sequencing (WGS) data is rapidly increasing, and incorporating this data into QMRA has the potential to enhance the reliability of risk estimates. This study provides insight into which are the key pathogen properties for incorporating WGS data to enhance risk estimation, through examination of example risk assessments for important foodborne pathogens: Listeria monocytogenes (Lm), Salmonella, Campylobacter and Shiga toxin-producing Escherichia coli. By investigating the relationship between phenotypic pathogen properties and genetic traits, a better understanding was gained regarding their impact on risk assessment. Virulence of Lm was identified as a promising property for associating different symptoms observed in humans with specific genotypes. Data from a genome-wide association study were used to correlate lineages, serotypes, sequence types, clonal complexes and the presence or absence of virulence genes of each strain with patient's symptoms. We also investigated the effect of incorporating WGS data into a QMRA model including relevant genomic traits of Lm, focusing on the dose-response phase of the risk assessment model, as described with the case/exposure ratio. The results highlighted that WGS studies which include phenotypic information must be encouraged, so as to enhance the accuracy of QMRA models. This study also underscores the importance of executing more risk assessments that consider the ongoing advancements in OMICS technologies, thus allowing for a closer investigation of different bacterial subtypes relevant to human health.

5.
Curr Protein Pept Sci ; 24(5): 380-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880186

RESUMO

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.


Assuntos
Alcaptonúria , Homogentisato 1,2-Dioxigenase , Humanos , Alcaptonúria/genética , Alcaptonúria/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Estudos de Associação Genética , Homogentisato 1,2-Dioxigenase/genética , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/metabolismo , Doenças Raras , Relação Estrutura-Atividade
6.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36928506

RESUMO

The multifaceted nature of CRISPR screens has propelled advancements in the field of functional genomics. Pooled CRISPR screens involve creating programmed genetic perturbations across multiple genomic sites in a pool of host cells subjected to a challenge, empowering researchers to identify genetic causes of desirable phenotypes. These genome-wide screens have been widely used in mammalian cells to discover biological mechanisms of diseases and drive the development of targeted drugs and therapeutics. Their use in non-model organisms, especially in microbes to improve bioprocessing-relevant phenotypes, has been limited. Further compounding this issue is the lack of bioinformatic algorithms for analyzing microbial screening data with high accuracy. Here, we describe the general approach and underlying principles for conducting pooled CRISPR knockout screens in non-conventional yeasts and performing downstream analysis of the screening data, while also reviewing state-of-the-art algorithms for identification of CRISPR screening outcomes. Application of pooled CRISPR screens to non-model yeasts holds considerable potential to uncover novel metabolic engineering targets and improve industrial bioproduction. ONE-SENTENCE SUMMARY: This mini-review describes experimental and computational approaches for functional genomic screening using CRISPR technologies in non-conventional microbes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genômica , Genoma , Biologia Computacional , Mamíferos/genética
7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768259

RESUMO

The radial spoke head protein 4 homolog A (RSPH4A) gene is one of more than 50 genes that cause Primary ciliary dyskinesia (PCD), a rare genetic ciliopathy. Genetic mutations in the RSPH4A gene alter an important protein structure involved in ciliary pathogenesis. Radial spoke proteins, such as RSPH4A, have been conserved across multiple species. In humans, ciliary function deficiency caused by RSPH4A pathogenic variants results in a clinical phenotype characterized by recurrent oto-sino-pulmonary infections. More than 30 pathogenic RSPH4A genetic variants have been associated with PCD. In Puerto Rican Hispanics, a founder mutation (RSPH4A (c.921+3_921+6delAAGT (intronic)) has been described. The spectrum of the RSPH4A PCD phenotype does not include laterality defects, which results in a challenging diagnosis. PCD diagnostic tools can combine transmission electron microscopy (TEM), nasal nitric oxide (nNO), High-Speed Video microscopy Analysis (HSVA), and immunofluorescence. The purpose of this review article is to provide a comprehensive overview of current knowledge about the RSPH4A gene in PCD, ranging from basic science to human clinical phenotype.


Assuntos
Síndrome de Kartagener , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Cílios/metabolismo , Proteínas/metabolismo , Mutação , Axonema/metabolismo , Proteínas do Citoesqueleto/metabolismo
8.
Plant Cell Environ ; 46(3): 780-795, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517924

RESUMO

Genetic markers can be linked with eco-physiological crop models to accurately predict genotype performance and individual markers' contributions in target environments, exploring interactions between genotype and environment. Here, wheat (Triticum aestivum L.) yield was dissected into seven traits corresponding to cultivar genetic coefficients in an eco-physiological model. Loci for these traits were discovered through the genome-wide association studies (GWAS). The cultivar genetic coefficients were derived from the loci using multiple linear regression or random forest, building a marker-based eco-physiological model. It is then applied to simulate wheat yields and design virtual ideotypes. The results indicated that the loci identified through GWAS explained 46%-75% variations in cultivar genetic coefficients. Using the marker-based model, the normalized root mean square error (nRMSE) between the simulated yield and observed yield was 13.95% by multiple linear regression and 13.62% by random forest. The nRMSE between the simulated and observed maturity dates was 1.24% by multiple linear regression and 1.11% by random forest, respectively. Structural equation modelling indicated that variations in grain yield could be well explained by cultivar genetic coefficients and phenological data. In addition, 24 pleiotropic loci in this study were detected on 15 chromosomes. More significant loci were detected by the model-based dissection method than considering yield per se. Ideotypes were identified by higher yield and more favourable alleles of cultivar genetic traits. This study proposes a genotype-to-phenotype approach and demonstrates novel ideas and tools to support the effective breeding of new cultivars with high yield through pyramiding favourable alleles and designing crop ideotypes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Marcadores Genéticos , Triticum/genética , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Alelos , Locos de Características Quantitativas/genética , Fenótipo , Genótipo , Polimorfismo de Nucleotídeo Único
9.
Mol Genet Genomic Med ; 10(10): e2026, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36114697

RESUMO

BACKGROUND: Voltage-gated sodium channels are essential for the generation and conduction of electrical impulses in excitable cells. Sodium channel Nav 1.7, encoded by the SCN9A-gene, has been of special interest in the last decades because missense gain-of-function mutations have been linked to a spectrum of neuropathic pain conditions, including inherited erythermalgia (IEM), paroxysmal extreme pain disorder (PEPD), and small fiber neuropathy (SFN). METHODS: In this case report, we present a 61-year-old woman who was referred to our tertiary referral center in a standard day care setting with suspicion of SFN. We performed additional investigations: skin biopsy to determine the intra-epidermal nerve fiber density (IENFD), quantitative sensory testing (QST), and blood examination (including DNA analysis) for possible underlying conditions. RESULTS: The patient showed a clinical picture that fulfilled the criteria of IEM, PEPD, and SFN. DNA analysis revealed the heterozygous variant c.554G > A in the SCN9A-gene (OMIM 603415). This variant has already been described in all three human pain conditions separately, but never in one patient having symptoms of all three conditions. Because its pathogenicity has never been functionally confirmed, the variant is classified as a variance of unknown significance (VUS)/risk factor. This suggests that another genetic and/or environmental substrate plays a role in the development of neuropathic conditions like described. CONCLUSION: We have described this as the SCN9A-pain triangle phenomenon. Treatment should focus on pain management, genetic counseling, and improving/maintaining quality of life by treating symptoms and, if indicated, starting a rehabilitation program.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Qualidade de Vida , DNA , Feminino , Humanos , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Reto/anormalidades
11.
Am J Med Genet A ; 188(2): 579-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773373

RESUMO

Variants in the pleckstrin homology domain-interacting protein (PHIP) gene are implicated in the clinical phenotype of Chung-Jansen syndrome, which includes dysmorphic features, cognitive dysfunction, aberrant behavior, and childhood onset obesity. Following a systematic literature review, 35 patients are reported to have unique PHIP variants impacting the encoded protein product. We summarize the status and frequency of these variants and relationship to clinical presentation. We also describe an additional patient with a rare, pathogenic variant due to a five base pair deletion leading to an altered codon at I307 but with a stop codon at 22 codons downstream; notably, a variant was identified at the same location as seen previously at protein position I307 in one other subject and a frameshift change at that protein position. We compare the clinical characteristics between the two patients and analyze whether certain types of gene defects impact clinical presentation in previously reported individuals. In addition, we predict structural protein models, which yielded unique differences between the wild-type and I307P-related mutant truncated proteins. Protein-protein interactions indicate involvement of POMC and related proteins with potential contribution to obesity, congenital, neuromuscular, and lipid disorders with heart, gastrointestinal, and rheumatoid diseases. With its surrounding proline-rich region, the I307P point mutation increases susceptibility to conformational rigidity and thermodynamic stability, ultimately impacting function as well as a stop codon downstream. Furthermore, the frameshift mutation seen in our patient may result in a truncated protein with a short abnormal region prior to the stop codon due to a five base pair deletion at I307 or target the protein for nonsense-mediated mRNA decay.


Assuntos
Mutação da Fase de Leitura , Degradação do RNAm Mediada por Códon sem Sentido , Criança , Mutação da Fase de Leitura/genética , Humanos , Fenótipo
12.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805386

RESUMO

Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia , Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Estresse Oxidativo , Proteínas de Bactérias/genética
13.
Mol Syst Biol ; 17(3): e10179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784029

RESUMO

Allostery is a fundamental biophysical mechanism that underlies cellular sensing, signaling, and metabolism. Yet a quantitative understanding of allosteric genotype-phenotype relationships remains elusive. Here, we report the large-scale measurement of the genotype-phenotype landscape for an allosteric protein: the lac repressor from Escherichia coli, LacI. Using a method that combines long-read and short-read DNA sequencing, we quantitatively measure the dose-response curves for nearly 105 variants of the LacI genetic sensor. The resulting data provide a quantitative map of the effect of amino acid substitutions on LacI allostery and reveal systematic sequence-structure-function relationships. We find that in many cases, allosteric phenotypes can be quantitatively predicted with additive or neural-network models, but unpredictable changes also occur. For example, we were surprised to discover a new band-stop phenotype that challenges conventional models of allostery and that emerges from combinations of nearly silent amino acid substitutions.


Assuntos
Genótipo , Repressores Lac/metabolismo , Fenótipo , Regulação Alostérica , Substituição de Aminoácidos , Escherichia coli/genética , Variação Genética
14.
Cells ; 10(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567613

RESUMO

Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Polyneuropathy, and Valosin-containing Protein-related Myopathy. Mutations in COL6A1, COL6A3, SGCA, SYNE1, FKTN, PLEKHG5, ANO5, and SMCHD1 genes were the most common, and the associated cardiac features included bundle branch blocks, ventricular chamber dilation, septal thickening, and increased outflow track gradients. Our observations suggest that features of cardiac disease and modifying gene mutations in patients with NMD require further investigation to better characterize genotype-phenotype relationships.


Assuntos
Cardiomiopatias/genética , Genes Modificadores , Doenças Neuromusculares/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
World J Microbiol Biotechnol ; 36(3): 41, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107645

RESUMO

This study presents a new microbial lipolytic enzyme GD-95RM designed via random mutagenesis using previously characterized GD-95 lipase as a template. The improvement in activity of GD-95 lipase was caused by E100K, F154V and V174I mutations. Compared with GD-95 lipase, the GD-95RM lipase had 1.3-fold increased specific activity (2000 U/mg), demonstrated resistance to higher temperatures (75-85 °C), had fourfold increased Vmax towards p-NP dodecanoate and showed 2.5-fold lower KM for p-NP butyrate. It retained > 50% of its lipolytic activity when hydrolyzing short, medium and long acyl chain substrates at 30 °C and 55 °C reaction temperatures after 20 days' incubation with 25% of ethanol. GD-95RM also displayed long-term tolerance (40 d) to 5% NaCl, trisodium citrate, sodium perborate, urea, 0.1% boric acid, citric acid and Triton X-100. Moreover, oil hydrolysis and transesterification results revealed the capability of GD-95RM lipase to produce fatty acids or fatty acid esters through eco-friendly hydrolysis and transesterification reactions using a broad range of vegetable and fish oils, animal fat and different alcohols as substrates. GD-95RM lipase was successfully applied in synthesis reactions for ethyl oleate, octyl oleate and isoamyl oleate without giving to use additional reaction compounds or special reaction conditions.


Assuntos
Geobacillus/enzimologia , Lipase/genética , Lipase/metabolismo , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiratos/química , Ésteres/química , Geobacillus/genética , Temperatura Alta , Produtos Domésticos , Lauratos/química , Lipase/química , Modelos Moleculares , Engenharia de Proteínas , Termodinâmica
16.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190160, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31884926

RESUMO

Mucociliary clearance (MCC) is one of the most important defence mechanisms of the human respiratory system. Its failure is implicated in many chronic and debilitating airway diseases. However, due to the complexity of lung organization, we currently lack full understanding on the relationship between these regional differences in anatomy and biology and MCC functioning. For example, it is unknown whether the regional variability of airway geometry, cell biology and ciliary mechanics play a functional role in MCC. It therefore remains unclear whether the regional preference seen in some airway diseases could originate from local MCC dysfunction. Though great insights have been gained into the genetic basis of cilia ultrastructural defects in airway ciliopathies, the scaling to regional MCC function and subsequent clinical phenotype remains unpredictable. Understanding the multiscale mechanics of MCC would help elucidate genotype-phenotype relationships and enable better diagnostic tools and treatment options. Here, we review the hierarchical and variable organization of ciliated airway epithelium in human lungs and discuss how this organization relates to MCC function. We then discuss the relevancy of these structure-function relationships to current topics in lung disease research. Finally, we examine how state-of-the-art computational approaches can help address existing open questions. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Assuntos
Cílios/fisiologia , Pneumopatias/fisiopatologia , Pulmão/fisiologia , Depuração Mucociliar , Humanos
17.
Clin Genet ; 97(1): 12-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30919937

RESUMO

Nucleotide excision repair (NER) is an essential DNA repair pathway devoted to the removal of bulky lesions such as photoproducts induced by the ultraviolet (UV) component of solar radiation. Deficiencies in NER typically result in a group of heterogeneous distinct disorders ranging from the mild UV sensitive syndrome to the cancer-prone xeroderma pigmentosum and the neurodevelopmental/progeroid conditions trichothiodystrophy, Cockayne syndrome and cerebro-oculo-facio-skeletal-syndrome. A complicated genetic scenario underlines these disorders with the same gene linked to different clinical entities as well as different genes associated with the same disease. Overlap syndromes with combined hallmark features of different NER disorders can occur and sporadic presentations showing extra features of the hematological disorder Fanconi Anemia or neurological manifestations mimicking Hungtinton disease-like syndromes have been described. Here, we discuss the multiple functions of the five major pleiotropic NER genes (ERCC3/XPB, ERCC2/XPD, ERCC5/XPG, ERCC1 and ERCC4/XPF) and their relevance in phenotypic complexity. We provide an update of mutational spectra and examine genotype-phenotype relationships. Finally, the molecular defects that could explain the puzzling overlap syndromes are discussed.


Assuntos
Síndrome de Cockayne/genética , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Síndrome de Cockayne/patologia , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Heterogeneidade Genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Nucleares/genética , Tolerância a Radiação , Fatores de Transcrição/genética , Raios Ultravioleta , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética
18.
BMC Bioinformatics ; 20(1): 565, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718537

RESUMO

BACKGROUND: Biologically data-driven networks have become powerful analytical tools that handle massive, heterogeneous datasets generated from biomedical fields. Protein-protein interaction networks can identify the most relevant structures directly tied to biological functions. Functional enrichments can then be performed based on these structural aspects of gene relationships for the study of channelopathies. Channelopathies refer to a complex group of disorders resulting from dysfunctional ion channels with distinct polygenic manifestations. This study presents a semi-automatic workflow using protein-protein interaction networks that can identify the most relevant genes and their biological processes and pathways in channelopathies to better understand their etiopathogenesis. In addition, the clinical manifestations that are strongly associated with these genes are also identified as the most characteristic in this complex group of diseases. RESULTS: In particular, a set of nine representative disease-related genes was detected, these being the most significant genes in relation to their roles in channelopathies. In this way we attested the implication of some voltage-gated sodium (SCN1A, SCN2A, SCN4A, SCN4B, SCN5A, SCN9A) and potassium (KCNQ2, KCNH2) channels in cardiovascular diseases, epilepsies, febrile seizures, headache disorders, neuromuscular, neurodegenerative diseases or neurobehavioral manifestations. We also revealed the role of Ankyrin-G (ANK3) in the neurodegenerative and neurobehavioral disorders as well as the implication of these genes in other systems, such as the immunological or endocrine systems. CONCLUSIONS: This research provides a systems biology approach to extract information from interaction networks of gene expression. We show how large-scale computational integration of heterogeneous datasets, PPI network analyses, functional databases and published literature may support the detection and assessment of possible potential therapeutic targets in the disease. Applying our workflow makes it feasible to spot the most relevant genes and unknown relationships in channelopathies and shows its potential as a first-step approach to identify both genes and functional interactions in clinical-knowledge scenarios of target diseases. METHODS: An initial gene pool is previously defined by searching general databases under a specific semantic framework. From the resulting interaction network, a subset of genes are identified as the most relevant through the workflow that includes centrality measures and other filtering and enrichment databases.


Assuntos
Canalopatias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Bases de Dados Genéticas , Redes Reguladoras de Genes , Humanos
19.
Int Rev Neurobiol ; 149: 207-235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31779813

RESUMO

Genetic atypical Parkinson's disease (PD) describes monogenic forms of PD that resemble idiopathic PD but feature prominent atypical clinical signs and symptoms and can be sub-grouped into i) atypical monogenic forms caused by mutations in the ATP13A2, DNAJC6, FBXO7, SYNJ1, VPS13C, and DCTN genes; ii) monogenic PD more closely resembling idiopathic PD, but associated with atypical features in at least a subset of cases (SNCA-, LRRK2-, VPS35-, Parkin-, PINK1-, and DJ-1-linked PD; iii) carriers of mutations in genes that are usually associated with other movement disorders but may present with parkinsonism, such as dopa-responsive dystonia. Some atypical features are shared by almost all forms, such as an overall early age at onset. Other clinical signs are present in carriers of mutations across several different genes, such as for example, early cognitive decline. Finally, several clinical features can serve as red flags for specific forms of atypical PD including a supranuclear gaze palsy in ATP13A2 mutation carriers or hypoventilation linked to mutations in the DCTN1 gene.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Humanos , Doença de Parkinson/classificação
20.
Mol Genet Metab ; 128(1-2): 14-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31331738

RESUMO

In 2000 and 2001, we described factors that lead to the phenotypes of individuals with "simple," "single" gene disorders, like inherited metabolic disorders, being complex, multi-genic traits. These factors include functional thresholds, genetic and environmental modifiers, and systems dynamics, encompassing metabolic control analysis and scale-free, hub-and-spoke networks. This mini-review will consider topics influencing complexity developed in the ensuing nearly two decades, such as "synergistic heterozygosity" and "moonlighting proteins." There will be a focus on the value of the measurement of flux in evaluating the metabolome to ascertain phenotypic variability and the potential role of the gut microbiome in metabolomic flux. A point-of-care metabolomics tool, under development to improve the real time, inter-operative ascertainment of tumor margins and similar devices, will provide opportunities to improve acute care and ongoing management of individuals with inherited metabolic disorders.


Assuntos
Microbioma Gastrointestinal , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Metaboloma , Humanos , Redes e Vias Metabólicas , Metabolômica , Fenótipo , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA