RESUMO
Throughout metazoa, germ cells assemble RNA-protein organelles (germ granules). In Drosophila ovaries, perinuclear nuage forms in the nurse cells, while compositionally similar polar granules form in the oocyte. A similar system appears to exist in the distantly related (â¼350 million years) wasp Nasonia, with some surprising divergences. Nuage is similarly formed in Nasonia, except that anterior nurse cells accumulate significantly more nuage, in association with high levels of DNA double-strand breaks, suggesting that increased transposon activity in anterior is silenced by high nuage levels. In the oocyte, the germ plasm forms a single granule that is 40 times larger than a homologous Drosophila polar granule. While conserved germ granule proteins are recruited to the oosome, they show unusual localization: Tudor protein forms a shell encapsulating the embryonic oosome, while small Oskar/Vasa/Aubergine granules coalesce interiorly. Wasp Vasa itself is unusual since it has an alternative splice form that includes a novel nucleoporin-like phenylalanine-glycine repeat domain. Our work is consistent with the high degree of evolutionary plasticity of membraneless organelles and describes new experimental model and resources to study biomolecular condensates.
RESUMO
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Assuntos
Quebras de DNA de Cadeia Dupla , Elementos de DNA Transponíveis , Células Germinativas , Animais , Elementos de DNA Transponíveis/genética , Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Drosophila melanogaster/genética , Feminino , Oogênese/genéticaRESUMO
Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Proteínas de Ligação a RNA , Proteínas de Xenopus , Xenopus laevis , Animais , Feminino , Células Germinativas/metabolismo , Células Germinativas/citologia , Oogênese/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Previously, we analyzed 316 herbal extracts to evaluate their potential nematocidal properties in Caenorhabditis elegans. In this study, our attention was directed towards Torenia sp., resulting in reduced survival and heightened larval arrest/lethality, alongside a noticeable decrease in DAPI-stained bivalent structures and disrupted meiotic progression, thus disrupting developmental processes. Notably, Torenia sp. extracts activated a DNA damage checkpoint response via the ATM/ATR and CHK-1 pathways, hindering germline development. LC-MS analysis revealed 13 compounds in the Torenia sp. extracts, including flavonoids, terpenoids, tanshinones, an analog of resveratrol, iridoids, carotenoids, fatty acids, and alkaloids. Of these, 10 are known for their antitumor activity, suggesting the potential of Torenia species beyond traditional gardening, extending into pharmaceutical and therapeutic applications.
RESUMO
The maintenance of genome integrity in the germline is crucial for mammalian development. Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element that makes up about 17% of the human genome and poses a threat to genome integrity. N6-methyl-adenosine (m6A) plays an essential role in regulating various biological processes. However, the function of m6A modification in L1 retrotransposons and human germline development remains largely unknown. Here we knocked out the m6A methyltransferase METTL3 or the m6A reader YTHDF2 in human embryonic stem cells (hESCs) and discovered that METTL3 and YTHDF2 are crucial for inducing human spermatogonial stem cells (hSSCs) from hESCs in vitro. The removal of METTL3 or YTHDF2 resulted in increased L1 retrotransposition and reduced the efficiency of SSC differentiation in vitro. Further analysis showed that YTHDF2 recognizes the METTL3-catalyzed m6A modification of L1 retrotransposons and degrades L1 mRNA through autophagy, thereby blocking L1 retrotransposition. Moreover, the study confirmed that m6A modification in human fetal germ cells promotes the degradation of L1 retrotransposon RNA, preventing the insertion of new L1 retrotransposons into the genome. Interestingly, L1 retrotransposon RNA was highly expressed while METTL3 was significantly downregulated in the seminal plasma of azoospermic patients with meiotic arrest compared to males with normal fertility. Additionally, we identified some potentially pathogenic variants in m6A-related genes in azoospermic men with meiotic arrest. In summary, our study suggests that m6A modification serves as a guardian of genome stability during human germline development and provides novel insights into the function and regulatory mechanisms of m6A modification in restricting L1 retrotransposition.
Assuntos
Azoospermia , Retroelementos , Masculino , Animais , Humanos , Retroelementos/genética , RNA , Azoospermia/genética , Diferenciação Celular/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , Mamíferos/metabolismoRESUMO
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Assuntos
Desenvolvimento Embrionário , Oogênese , Peixe-Zebra , Animais , Oogênese/fisiologia , Peixe-Zebra/embriologia , Desenvolvimento Embrionário/fisiologia , Células Germinativas/metabolismo , Feminino , Xenopus/embriologiaRESUMO
BACKGROUND: Disrupted germline differentiation or compromised testis development can lead to subfertility or infertility and are strongly associated with testis cancer in humans. In mice, SRY and SOX9 induce expression of Fgf9, which promotes Sertoli cell differentiation and testis development. FGF9 is also thought to promote male germline differentiation but the mechanism is unknown. FGFs typically signal through mitogen-activated protein kinases (MAPKs) to phosphorylate ERK1/2 (pERK1/2). We explored whether FGF9 regulates male germline development through MAPK by inhibiting either FGF or MEK1/2 signalling in the foetal testis immediately after gonadal sex determination and testis cord formation, but prior to male germline commitment. RESULTS: pERK1/2 was detected in Sertoli cells and inhibition of MEK1/2 reduced Sertoli cell proliferation and organisation and resulted in some germ cells localised outside of the testis cords. While pERK1/2 was not detected in germ cells, inhibition of MEK1/2 after somatic sex determination profoundly disrupted germ cell mitotic arrest, dysregulated a broad range of male germline development genes and prevented the upregulation of key male germline markers, DPPA4 and DNMT3L. In contrast, while FGF inhibition reduced Sertoli cell proliferation, expression of male germline markers was unaffected and germ cells entered mitotic arrest normally. While male germline differentiation was not disrupted by FGF inhibition, a range of stem cell and cancer-associated genes were commonly altered after 24 h of FGF or MEK1/2 inhibition, including genes involved in the maintenance of germline stem cells, Nodal signalling, proliferation, and germline cancer. CONCLUSIONS: Together, these data demonstrate a novel role for MEK1/2 signalling during testis development that is essential for male germline differentiation, but indicate a more limited role for FGF signalling. Our data indicate that additional ligands are likely to act through MEK1/2 to promote male germline differentiation and highlight a need for further mechanistic understanding of male germline development.
Assuntos
Neoplasias , Testículo , Masculino , Camundongos , Humanos , Animais , Testículo/metabolismo , Fator 2 de Crescimento de Fibroblastos , Células Germinativas , Diferenciação Celular , Neoplasias/metabolismoRESUMO
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Assuntos
Drosophila , Epigenoma , Masculino , Animais , Drosophila/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Espermatócitos/metabolismoRESUMO
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-ß (CBFß) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFß in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFß regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFß also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFß modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
RESUMO
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
RESUMO
PURPOSE: The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS: Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS: Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS: Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Transporte , Proteínas de Transporte de Cátions , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Fertilidade , Células Germinativas/metabolismo , Humanos , Filogenia , Zinco/metabolismoRESUMO
Metazoans exhibit two modes of primordial germ cell (PGC) specification that are interspersed across taxa. However, the evolutionary link between the two modes and the reproductive strategies of lecithotrophy and matrotrophy is poorly understood. As a first step to understand this, the spatio-temporal expression of teleostean germ plasm markers was investigated in Gambusia holbrooki, a poecilid with shared lecitho- and matrotrophy. A group of germ plasm components was detected in the ovum suggesting maternal inheritance mode of PGC specification. However, the strictly zygotic activation of dnd-ß and nanos1 occurred relatively early, reminiscent of models with induction mode (e.g., mice). The PGC clustering, migration and colonisation patterns of G. holbrooki resembled those of zebrafish, medaka and mice at blastula, gastrula and somitogenesis, respectively-recapitulating features of advancing evolutionary nodes with progressive developmental stages. Moreover, the expression domains of PGC markers in G. holbrooki were either specific to teleost (vasa expression in developing PGCs), murine models (dnd spliced variants) or shared between the two taxa (germline and somatic expression of piwi and nanos1). Collectively, the results suggest that the reproductive developmental adaptations may reflect a transition from lecithotrophy to matrotrophy.
RESUMO
Mammalian haploid cells have applications for genetic screening and substituting gametic genomes. Here, we characterize a culture system for obtaining haploid primordial germ cell-like cells (PGCLCs) from haploid mouse embryonic stem cells (ESCs). We find that haploid cells show predisposition for PGCLCs, whereas a large fraction of somatic cells becomes diploid. Characterization of the differentiating haploid ESCs (haESCs) reveals that Xist is activated from and colocalizes with the single X chromosome. This observation suggests that X chromosome inactivation (XCI) is initiated in haploid cells consistent with a model where autosomal blocking factors set a threshold for X-linked activators. We further find that Xist expression is lost at later timepoints in differentiation, which likely reflects the loss of X-linked activators. In vitro differentiation of haploid PGCLCs can be a useful approach for future studies of potential X-linked activators of Xist.
Assuntos
Células-Tronco Embrionárias/metabolismo , Células Germinativas/metabolismo , Haploidia , RNA Longo não Codificante/genética , Cromossomo X , Animais , Biomarcadores , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Camundongos , Inativação do Cromossomo XRESUMO
Eukaryotic genomes harbor invading transposable elements that are silenced by PIWI-interacting RNAs (piRNAs) to maintain genome integrity in animal germ cells. However, whether piRNAs also regulate endogenous gene expression programs remains unclear. Here, we show that C. elegans piRNAs trigger the transcriptional silencing of hundreds of spermatogenic genes during spermatogenesis, promoting sperm differentiation and function. This silencing signal requires piRNA-dependent small RNA biogenesis and loading into downstream nuclear effectors, which correlates with the dynamic reorganization of two distinct perinuclear biomolecular condensates present in germ cells. In addition, the silencing capacity of piRNAs is temporally counteracted by the Argonaute CSR-1, which targets and licenses spermatogenic gene transcription. The spatial and temporal overlap between these opposing small RNA pathways contributes to setting up the timing of the spermatogenic differentiation program. Thus, our work identifies a prominent role for piRNAs as direct regulators of endogenous transcriptional programs during germline development and gamete differentiation.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , RNA Interferente Pequeno/genética , Espermatogênese/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Elementos de DNA Transponíveis/genética , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Masculino , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/fisiologia , Transcrição Gênica/genéticaRESUMO
Germline development is sensitive to nutrient availability and environmental perturbation. Heat shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 in C. elegans) and its regulation in germline development are poorly understood. Using the auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell proliferation and early meiosis and identified a compact but important transcriptional program of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proliferação de Células , Células Germinativas/metabolismo , Resposta ao Choque Térmico , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Meiose , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proliferação de Células/efeitos dos fármacos , Fertilidade , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/farmacologia , Meiose/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
piRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis. Here, we show that the thoc7-null mutant combination increases transposon transcription but does not reduce anti-sense piRNAs targeting half of the transcriptionally activated transposon families. These mutations also fail to reduce piRNA-guided H3K9me3 chromatin modification or block Panoramix-dependent silencing of a reporter transgene, and unspliced transposon transcripts co-precipitate with THO through a Piwi- and Panoramix-independent mechanism. Mutations in piwi also dominantly enhance germline defects associated with thoc7-null alleles. THO thus functions in a piRNA-independent transposon-silencing pathway, which acts cooperatively with Piwi to support germline development.
Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica/fisiologia , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismoRESUMO
The C. elegans germline is organized as a syncytium in which each germ cell possesses an intercellular bridge that is maintained by a stable actomyosin ring and connected to a common pool of cytoplasm, termed the rachis. How germ cells undergo cytokinesis while maintaining this syncytial architecture is not completely understood. Here, we use live imaging to characterize primordial germ cell (PGC) division in C. elegans first-stage larvae. We show that each PGC possesses a stable intercellular bridge that connects it to a common pool of cytoplasm, which we term the proto-rachis. We further show that the first PGC cytokinesis is incomplete and that the stabilized cytokinetic ring progressively moves towards the proto-rachis and eventually integrates with it. Our results support a model in which the initial expansion of the C. elegans syncytial germline occurs by incomplete cytokinesis, where one daughter germ cell inherits the actomyosin ring that was newly formed by stabilization of the cytokinetic ring, while the other inherits the pre-existing stable actomyosin ring. We propose that such a mechanism of iterative cytokinesis incompletion underpins C. elegans germline expansion and maintenance.
Assuntos
Caenorhabditis elegans/citologia , Citocinese/fisiologia , Células Germinativas/citologia , Citoesqueleto de Actina/fisiologia , Actomiosina/fisiologia , Animais , Citoplasma/fisiologia , Células Gigantes/fisiologiaRESUMO
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Assuntos
Drosophila , AnimaisRESUMO
Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.