Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Signal ; 120: 111191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685521

RESUMO

Recent studies have revealed that PTPRZ1-MET (ZM) fusion plays a pivotal role in the progression of glioma to glioblastoma multiforme (GBM), thus serving as a biomarker to distinguish between primary GBM and secondary GBM (sGBM). However, the mechanisms through which ZM fusion influences this progression remain to be elucidated. GBMs with ZM showed poorer prognoses and greater infiltration of tumor-associated macrophages (TAMs) than those without ZM. Glioma stem-like cells (GSCs) and TAMs play complex roles in glioma recurrence, glioma progression and therapy resistance. In this study, we analyzed RNA-seq data from sGBM patients' glioma tissues with or without ZM fusion, and found that stemness and macrophage markers were more highly expressed in sGBM patients harboring ZM than in those without ZM fusion. ZM enhanced the self-renewal and proliferation of GSCs, thereby accelerating glioma progression. In addition, ZM-positive GSCs facilitated the infiltration of TAMs and drove their polarization toward an immunosuppressive phenotype, which was primarily accomplished through the extracellular secretion of ISG20. Our research identified the MET-STAT3-ISG20 axis within GSCs, thus demonstrating the critical role of ZM in GBM initiation and progression. Our study demonstrated that, in contrast to ZM-positive differentiated glioma cells, ZM-positive GSCs upregulated ISG20 expression through the MET-STAT3-ISG20 axis. The extracellular secretion of ISG20 recruited and induced M2-like polarization in macrophages, thereby promoting tumor progression. Our results reveal a novel mechanism involved in ZM-positive GBM pathogenesis and identify potential therapeutic targets.


Assuntos
Glioma , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-met , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Fator de Transcrição STAT3 , Macrófagos Associados a Tumor , Humanos , Fator de Transcrição STAT3/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/metabolismo , Glioma/patologia , Glioma/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Glioblastoma/patologia , Glioblastoma/metabolismo
2.
Cancers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473223

RESUMO

Glioblastoma is an aggressive, incurable brain cancer with poor five-year survival rates of around 13% despite multimodal treatment with surgery, DNA-damaging chemoradiotherapy and the recent addition of Tumour Treating Fields (TTFields). As such, there is an urgent need to improve our current understanding of cellular responses to TTFields using more clinically and surgically relevant models, which reflect the profound spatial heterogeneity within glioblastoma, and leverage these biological insights to inform the rational design of more effective therapeutic strategies incorporating TTFields. We have recently reported the use of preclinical TTFields using the inovitroTM system within 2D glioma stem-like cell (GSC) models and demonstrated significant cytotoxicity enhancement when co-applied with a range of therapeutically approved and preclinical DNA damage response inhibitors (DDRi) and chemoradiotherapy. Here we report the development and optimisation of preclinical TTFields delivery within more clinically relevant 3D scaffold-based primary GSC models of spatial heterogeneity, and highlight some initial enhancement of TTFields potency with temozolomide and clinically approved PARP inhibitors (PARPi). These studies, therefore, represent an important platform for further preclinical assessment of TTFields-based therapeutic strategies within clinically relevant 3D GSC models, aimed towards accelerating clinical trial implementation and the ultimate goal of improving the persistently dire survival rates for these patients.

3.
Neuro Oncol ; 26(8): 1388-1401, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456228

RESUMO

BACKGROUND: Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS: lncRNAs induced by hypoxia in GSCs were identified by RNA-seq. Lung cancer-associated transcript-1 (LUCAT1) expression was assessed by qPCR, RNA-seq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, The Cancer Genome Atlas, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNA-seq, Western blot, immunohistochemistry, co-IP, ChIP, ChIP-seq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS: A new isoform of Lucat1 is induced by Hypoxia inducible factor 1 alpha (HIF1α) and Nuclear factor erythroid 2-related factor 2 (NRF2) in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS: A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Animais , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Células Tumorais Cultivadas , Camundongos Nus , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Apoptose
4.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958423

RESUMO

Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.

5.
EMBO Rep ; 24(12): e56964, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37938214

RESUMO

Glioblastoma is a very aggressive tumor and represents the most common primary brain malignancy. Key characteristics include its high resistance against conventional treatments, such as radio- and chemotherapy and its diffuse tissue infiltration, preventing complete surgical resection. The analysis of migration and invasion processes in a physiological microenvironment allows for enhanced understanding of these phenomena and can lead to improved therapeutic approaches. Here, we combine two state-of-the-art techniques, adult organotypic brain tissue slice culture (OTC) and light-sheet fluorescence microscopy (LSFM) of cleared tissues in a combined method termed OTCxLSFM. Using this methodology, we can show that glioblastoma tissue infiltration can be effectively blocked through treatment with arsenic trioxide or WP1066, as well as genetic depletion of the tetraspanin, transmembrane receptor CD9, or signal transducer and activator of transcription 3 (STAT3). With our analysis pipeline, we gain single-cell level, three-dimensional information, as well as insights into the morphological appearance of the tumor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Microscopia de Fluorescência , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Phytomedicine ; 114: 154764, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963368

RESUMO

BACKGROUND: Our previous study found that XHP could induce GBM cells to undergo apoptosis. A lot of evidence suggests that glioma stem-like cells (GSCs) are key factors that contribute to disease progression and poor prognosis of glioblastoma multiforme (GBM). Traditional Chinese medicine has been applied in clinical practice as a complementary and alternative therapy for glioma. PURPOSE: To evaluate the effect and the potential molecular mechanism of Xihuang pill (XHP) on GSCs. METHODS: UPLC-QTOF-MS analysis was used for constituent analysis of XHP. Using network pharmacology and bioinformatics methods, a molecular network targeting GSCs by the active ingredients in XHP was constructed. Cell viability, self-renewal ability, apoptosis, and GSC markers were detected by CCK-8 assay, tumor sphere formation assay and flow cytometry, respectively. The interrelationship between GSC markers (CD133 and SOX2) and key proteins of the EGFR/Akt/mTOR signaling pathway was evaluated using GEPIA and verified by western blot. A GBM cell line stably overexpressing Akt was constructed using lentivirus to evaluate the role of Akt signaling in the regulation of glioma stemness. The effect of XHP on glioma growth was analyzed by a subcutaneously transplanted glioma cell model in nude mice, hematoxylin-eosin staining was used to examine pathological changes, TUNEL staining was used to detect apoptosis in tumor tissues, and the expression of GSC markers in tumor tissues was identified by western blot and immunofluorescence. RESULTS: Bioinformatics analysis showed that 55 matched targets were related to XHP targets and glioma stem cell targets. In addition to causing apoptosis, XHP could diminish the number of GBM 3D spheroids, the proportion of CD133-positive cells and the expression level of GSC markers (CD133 and SOX2) in vitro. Furthermore, XHP could attenuate the expression of CD133, EGFR, p-Akt, p-mTOR and SOX2 in GBM spheres. Overexpression of Akt significantly increased the expression level of SOX2, which was prohibited in the presence of XHP. XHP reduced GSC markers including CD133 and SOX2, and impeded the development of glioma growth in xenograft mouse models in vivo. CONCLUSION: We demonstrate for the first time that XHP down-regulates stemness, restrains self-renewal and induces apoptosis in GSCs and impedes glioma growth by down-regulating SOX2 through destabilizing the CD133/EGFR/Akt/mTOR cascade.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Baixo , Camundongos Nus , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Células-Tronco Neoplásicas , Neoplasias Encefálicas/patologia , Proliferação de Células
7.
Cells ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497175

RESUMO

Glioblastoma (GBM) still presents as one of the most aggressive tumours in the brain, which despite enormous research efforts, remains incurable today. As many theories evolve around the persistent recurrence of this malignancy, the assumption of a small population of cells with a stem-like phenotype remains a key driver of its infiltrative nature. In this article, we research Chordin-like 1 (CHRDL1), a secreted protein, as a potential key regulator of the glioma stem-like cell (GSC) phenotype. It has been shown that CHRDL1 antagonizes the function of bone morphogenic protein 4 (BMP4), which induces GSC differentiation and, hence, reduces tumorigenicity. We, therefore, employed two previously described GSCs spheroid cultures and depleted them of CHRDL1 using the stable transduction of a CHRDL1-targeting shRNA. We show with in vitro cell-based assays (MTT, limiting dilution, and sphere formation assays), Western blots, irradiation procedures, and quantitative real-time PCR that the depletion of the secreted BMP4 antagonist CHRDL1 prominently decreases functional and molecular stemness traits resulting in enhanced radiation sensitivity. As a result, we postulate CHRDL1 as an enforcer of stemness in GSCs and find additional evidence that high CHRDL1 expression might also serve as a marker protein to determine BMP4 susceptibility.


Assuntos
Glioblastoma , Glioma , Humanos , Linhagem Celular Tumoral , Glioma/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/patologia
8.
Acta Pharm Sin B ; 12(4): 1761-1780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847486

RESUMO

Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34952030

RESUMO

Long noncoding RNA (lncRNA) has been recently revealed as a main regulatory molecule, which implicates many cellular functions. Studies showed that lncRNA abnormally expressed and involved in the progression and tumorigenesis of glioma. Present study identified a novel lncRNA associated with glioma, glioma stem-like cells (GSCs), and then revealed their potential functions. During the screening of lncRNAs, we investigated overexpression of lncRNA RP5-821D11.7 (lncRNA-RP5) in GSCs compared to glioma cells. Lentivirus-mediated shRNA for lncRNA-RP5 was constructed and transfected into glioma cells. Transfected stable glioma cells were transplanted into nude mice and tumor growth was observed. Knockdown of lncRNA-RP5 significantly inhibits proliferation, colony formation, migration and reduces epithelial-mesenchymal transition (EMT) by activating the Wnt/ß-catenin pathway. Additionally, the results showed that lncRNA RP5 knockdown enhances cell apoptosis through endoplasmic reticulum stress. Therefore, this study may provide a better understanding about lncRNA-RP5 which revealed that it might be a potential therapeutic target in case of glioma progression and recurrence.

10.
Front Oncol ; 11: 751792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868955

RESUMO

Glioma stem-like cells (GSCs) are a subset of tumor cells that initiate malignant growth and promote the therapeutic resistance of glioblastoma, the most lethal primary brain tumor. Ribosome biogenesis is an essential cellular process to maintain cell growth, but its regulatory mechanism in GSCs remains largely unknown. Here, we show that WD repeat domain 12 (WDR12), a component of the Pes1-Bop1 complex (PeBoW), is required for ribosome biogenesis in GSCs. WDR12 is preferentially expressed in GSCs compared to non-stem tumor cells and normal brain cells. High levels of WDR12 are associated with glioblastoma progression and poor prognosis. Silencing WDR12 results in the degradation of PeBoW complex components and prevents the maturation of 28S rRNA, thereby inhibiting ribosome biogenesis in GSCs. Subsequently, WDR12 depletion compromises GSC proliferation, inhibits GSC-derived orthotopic tumor growth, and extends animal survival. Together, our results suggest that WDR12 is crucial for ribosome biogenesis in GSCs, and is thus a potential target for GSC-directed therapy of glioblastoma.

11.
Cancers (Basel) ; 13(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885053

RESUMO

The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.

12.
Mol Ther Oncolytics ; 22: 232-244, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34514102

RESUMO

The difficulty of glioblastoma treatment makes it a good candidate for novel therapies, such as oncolytic viruses. Vesicular stomatitis virus expressing Lassa virus glycoprotein (Lassa-VSV) showed significant promise in animal models using established glioblastoma cell lines. These experiments were to determine the susceptibility of low-passage, patient-derived cell lines to Lassa-VSV oncolysis. Four patient-derived glioblastoma cell lines were infected with Lassa-VSV that expresses green fluorescent protein (GFP) and analyzed by fluorescence microscopy, flow cytometry, and cell viability assays. Cells were also analyzed as tumorspheres containing primarily glioma stem-like cells. Three low-passage, patient-derived cells were further analyzed with RNA sequencing (RNA-seq). Individual cell lines varied somewhat in their levels of viral gene expression and time course of Lassa-VSV-induced cell death, but each was susceptible to Lassa-VSV. Brain Tumor Center of Excellence (BTCOE) 4765 cells had the highest level of expression of interferon-stimulated genes but were most susceptible to Lassa-VSV-induced cell death, indicating that more susceptible cells do not necessarily have lower interferon pathway activation. Cells cultured as tumorspheres and infected with Lassa-VSV also showed variable susceptibility to Lassa-VSV, but BTCOE 4765 cells were least susceptible. Thus, patient-derived brain tumor cells show variable responses to Lassa-VSV infection, but each of the lines was susceptible to VSV oncolysis.

13.
Front Oncol ; 11: 603128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816233

RESUMO

Recent studies have reported that cancer associated fibroblasts (CAFs) and glioma stem-like cells (GSCs) played active roles in glioma progression in tumor microenvironment (TME). Long non-coding RNAs (lncRNAs) have been found to be closely associated with glioma development in recent years, however, their molecular regulatory mechanisms on CAFs in GSCs remodeled TME kept largely unelucidated. Our study found that GSCs could induce malignant transformation of fibroblasts (t-FBs) based on dual-color fluorescence tracing orthotopic model. Associated with poor prognosis, Lnc HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1) was highly expressed in high-grade gliomas and t-FBs. Depleting HOTAIRM1 inhibited the proliferation, invasion, migration, and even tumorigenicity of t-FB. Conversely, overexpression of HOTAIRM1 promoted malignancy phenotype of t-FB. Mechanistically, HOTAIRM1 directly bound with miR-133b-3p, and negatively regulated the latter. MiR-133b-3p partly decreased the promotion effect of HOTAIRM1 on t-FBs. Furthermore, transforming growth factor-ß (TGFß) was verified to be a direct target of miR-133b-3p. HOTAIRM1 can modulate TGFß via competing with miR-133b-3p. Collectively, HOTAIRM1/miR-133b-3p/TGFß axis was involved in modulating t-FBs malignancy in TME remodeled by GSCs, which had the potential to serve as a target against gliomas.

14.
J Biomed Sci ; 28(1): 18, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685470

RESUMO

Glioblastoma is the most common primary malignant brain tumor that is usually considered fatal even with treatment. This is often a result for tumor to develop resistance. Regarding the standard chemotherapy, the alkylating agent temozolomide is effective in disease control but the recurrence will still occur eventually. The mechanism of the resistance is various, and differs in terms of innate or acquired. To date, aberrations in O6-methylguanine-DNA methyltransferase are the clear factor that determines drug susceptibility. Alterations of the other DNA damage repair genes such as DNA mismatch repair genes are also known to affect the drug effect. Together these genes have roles in the innate resistance, but are not sufficient for explaining the mechanism leading to acquired resistance. Recent identification of specific cellular subsets with features of stem-like cells may have role in this process. The glioma stem-like cells are known for its superior ability in withstanding the drug-induced cytotoxicity, and giving the chance to repopulate the tumor. The mechanism is complicated to administrate cellular protection, such as the enhancing ability against reactive oxygen species and altering energy metabolism, the important steps to survive. In this review, we discuss the possible mechanism for these specific cellular subsets to evade cancer treatment, and the possible impact to the following treatment courses. In addition, we also discuss the possibility that can overcome this obstacle.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia , Animais , Glioblastoma/tratamento farmacológico , Humanos
15.
Theranostics ; 11(2): 555-566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391492

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor in adults with a median survival of around 15 months. A potential treatment strategy involves targeting glioma stem-like cells (GSCs) that are able to initiate, maintain, and repopulate the tumor mass. Here, we identify ACT001, a parthenolide derivative, targeting GSCs through regulation of adipocyte enhancer binding protein 1 (AEBP1) signaling. Methods: The effects of ACT001 on cell survival of normal human astrocytes (NHA) and patient-derived glioma stem-like cells (GSCs) were evaluated. RNA-Seq were performed to detect differentially expressed genes. ACT001 efficacy as a single agent or in combination with SHP-2 inhibitor SHP099 was assessed using a GSC orthotopic xenograft model. Results: GSCs exhibit high response to ACT001 in compared with normal human astrocytes. AEBP1 is a putative target of ACT001 by RNA-Seq analysis, which expression associates with prognosis of GBM patients. Knockdown of AEBP1 inhibits GSC proliferation and glioma sphere formation. Treatment with ACT001 or PI3K inhibitor or AEBP1 depletion would impair AKT phosphorylation and GSC proliferation, whereas constitutive AKT activation rescues ACT001 treatment or AEBP1 depletion-inhibited cell proliferation. Moreover, ACT001 blocks TGF-ß-activated AEBP1/AKT signaling in GSCs. ACT001 exhibits antitumor activity either as a single agent or in combination with SHP099, which provides significant survival benefits for GSC tumor xenograft-bearing animals. Conclusions: Our data demonstrate AEBP1 as a new druggable target in GBM and ACT001 as a potential therapeutic option for improving the clinical treatment of GBM in combination with SHP099.


Assuntos
Antineoplásicos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Furanos/farmacologia , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Sesquiterpenos/química , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Aging (Albany NY) ; 12(13): 13647-13667, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632040

RESUMO

Recent studies have confirmed that both cancer-associated bone marrow mesenchymal stem cells (BM-MSCs, MSCs) and glioma stem-like cells (GSCs) contribute to malignant progression of gliomas through their mutual interactions within the tumor microenvironment. However, the exact ways and relevant mechanisms involved in the actions of GSCs and MSCs within the glioma microenvironment are not fully understood. Using a dual-color fluorescence tracing model, our studies revealed that GSCs are able to spontaneously fuse with MSCs, yielding GSC/MSC fusion cells, which exhibited markedly enhanced proliferation and invasiveness. MiR-146b-5p was downregulated in the GSC/MSC fusion cells, and its overexpression suppressed proliferation, migration and invasion by the fusion cells. SMARCA5, which is highly expressed in high-grade gliomas, was a direct downstream target of miR-146b-5p in the GSC/MSC fusion cells. miR-146b-5p inhibited SMARCA5 expression and inactivated a TGF-ß pathway, thereby decreasing GSC/MSC fusion cell proliferation, migration and invasion. Collectively, these findings demonstrate that miR-146b-5p suppresses the malignant phenotype of GSC/MSC fusion cells in the glioma microenvironment by targeting a SMARCA5-regulated TGF-ß pathway.


Assuntos
Adenosina Trifosfatases/genética , Neoplasias Encefálicas/genética , Proteínas Cromossômicas não Histona/genética , Glioblastoma/genética , MicroRNAs/metabolismo , Idoso , Astrócitos , Neoplasias Encefálicas/patologia , Fusão Celular , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncol Rep ; 43(5): 1479-1490, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323804

RESUMO

Glioblastoma (GBM) is the most prevalent and lethal primary intrinsic brain cancer. The disease is essentially incurable, with glioblastomas characterized by resistance to both chemotherapy and radiotherapy, as well as by rapid tumor progression, all of which are mainly ascribed to glioma stem­like cells (GSLCs). In the present study, an improved model that is more similar to clinical GBM was constructed. Twenty clinical glioma samples were collected to obtain primary low­grade tumor cells. The cells were either maintained in serum­free medium as primary glioma­based cells (PGBCs) or cultured in the same medium with CHIR99021 as GSLCs. Then, the molecular and ultrastructural differences between the two cell groups were determined. Furthermore, the proliferation and migration of the GSLCs were examined and the potential mechanisms were investigated. Finally, temozolomide resistance in vitro and in the mouse model was assessed to study the properties of the induced GSLCs. The primary low­grade tumor cells extracted from surgical samples were enriched with GSLC properties, with high expression levels of CD133 and Nestin in 100 nM CHIR99021. The GSLCs exhibited high proliferation and migration. Furthermore, the expression of the PI3K/AKT signaling pathway and that of related genes and proteins were significantly enhanced by CHIR99021. The animal study also revealed high levels of STAT3, mTOR, NF­κB, and VEGF in the GSLC­transplanted mice. CHIR99021 could stably enhance GSLC properties in patient­derived glioma samples. It may provide a useful model for further study, helping to understand the pathogenesis of therapeutic resistance and to screen drug candidates.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Nestina/metabolismo , Piridinas/efeitos adversos , Pirimidinas/efeitos adversos , Animais , Neoplasias Encefálicas/metabolismo , Técnicas de Cultura de Células , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Gradação de Tumores , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Regulação para Cima
18.
Cancer Cell Int ; 20: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165861

RESUMO

BACKGROUND: Gliomas represent the largest class of primary central nervous system neoplasms, many subtypes of which exhibit poor prognoses. Surgery followed by radiotherapy and chemotherapy has been used as a standard strategy but yielded unsatisfactory improvements in patient survival outcomes. The S-phase kinase protein 2 (Skp2), a critical component of the E3-ligase SCF complex, has been documented in tumorigenesis in various cancer types but its role in glioma has yet to be fully clarified. In this study, we investigated the function of Skp2 in the proliferation, stem cell maintenance, and drug sensitivity to temozolomide (TMZ) of glioma. METHODS: To investigate the role of Skp2 in the prognosis of patients with glioma, we first analyzed data in databases TCGA and GTEx. To further clarify the effect of Skp2 on glioma cell proliferation, we suppressed its level in glioblastoma (GBM) cell lines through knockdown and small molecule inhibitors (lovastatin and SZL-P1-41). We then detected cell growth, colony formation, sphere formation, drug sensitivity, and in vivo tumor formation in xenograft mice model. RESULTS: Skp2 mRNA level was higher in both low-grade glioma and GBM than normal brain tissues. The knockdown of Skp2 increased cell sensitivity to TMZ, decreased cell proliferation and tumorigenesis. In addition, Skp2 level was found increased upon stem cells enriching, while the knockdown of Skp2 led to reduced sphere numbers. Downregulation of Skp2 also induced senescence. Repurposing of lovastatin and novel compound SZL-P1-41 suppressed Skp2 effectively, and enhanced glioma cell sensitivity to TMZ in vitro and in vivo. CONCLUSION: Our data demonstrated that Skp2 modulated glioma cell proliferation in vitro and in vivo, stem cell maintenance, and cell sensitivity to TMZ, which indicated that Skp2 could be a potential target for long-term treatment.

19.
Cancers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861603

RESUMO

The question whether perivascular glioma cells invading the brain far from the tumor bulk may disrupt the blood-brain barrier (BBB) represents a crucial issue because under this condition tumor cells would be no more protected from the reach of chemotherapeutic drugs. A recent in vivo study that used human xenolines, demonstrated that single glioma cells migrating away from the tumor bulk are sufficient to breach the BBB. Here, we used brain xenografts of patient-derived glioma stem-like cells (GSCs) to show by immunostaining that in spite of massive perivascular invasion, BBB integrity was preserved in the majority of vessels located outside the tumor bulk. Interestingly, the tumor cells that invaded the brain for the longest distances traveled along vessels with retained BBB integrity. In surgical specimens of malignant glioma, the area of brain invasion showed several vessels with preserved BBB that were surrounded by tumor cells. On transmission electron microscopy, the cell inter-junctions and basal lamina of the brain endothelium were preserved even in conditions in which the tumor cells lay adjacently to blood vessels. In conclusion, BBB integrity associates with extensive perivascular invasion of glioma cells.

20.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717924

RESUMO

Glioblastoma (GBM) is the most aggressive type of brain tumor, with strong invasiveness and a high tolerance to chemotherapy. Despite the current standard treatment combining temozolomide (TMZ) and radiotherapy, glioblastoma can be incurable due to drug resistance. The existence of glioma stem-like cells (GSCs) is considered the major reason for drug resistance. However, the mechanism of GSC enrichment remains unclear. Herein, we found that the expression and secretion of angiopoietin-like 4 protein (ANGPTL4) were clearly increased in GSCs. The overexpression of ANGPTL4 induced GSC enrichment that was characterized by polycomb complex protein BMI-1 and SRY (sex determining region Y)-box 2 (SOX2) expression, resulting in TMZ resistance in GBM. Furthermore, epidermal growth factor receptor (EGFR) phosphorylation induced 4E-BP1 phosphorylation that was required for ANGPTL4-induced GSC enrichment. In particular, ANGPTL4 induced 4E-BP1 phosphorylation by activating phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades for inducing stemness. To elucidate the mechanism contributing to ANGPTL4 upregulation in GSCs, chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) revealed that specificity protein 4 (Sp4) was associated with the promoter region, -979 to -606, and the luciferase reporter assay revealed that Sp4 positively regulated activity of the ANGPTL4 promoter. Moreover, both ANGPTL4 and Sp4 were highly expressed in GBM and resulted in a poor prognosis. Taken together, Sp4-mediated ANGPTL4 upregulation induces GSC enrichment through the EGFR/AKT/4E-BP1 cascade.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Antineoplásicos Alquilantes/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA