Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Immunol ; 15: 1432743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247193

RESUMO

Introduction: Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method: In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results: A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion: Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.


Assuntos
Infecções por Orthomyxoviridae , Proteômica , Traqueia , Animais , Traqueia/imunologia , Traqueia/virologia , Suínos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteômica/métodos , Humanos , Adaptação ao Hospedeiro/imunologia , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Multiômica
2.
Mol Pharm ; 21(7): 3204-3217, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809137

RESUMO

The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking. The aim of our study was to characterize transporter protein expression in rabbit and porcine CE to better understand potential drug and nutrient absorption after topical administration. Proteins, mainly Abc and Slc transporters, were characterized with quantitative targeted absolute proteomics and global untargeted proteomics methods. In the rabbit CE, 24 of 48 proteins were detected in the targeted approach, and 21 of these were quantified. In the porcine CE, 26 of 58 proteins were detected in the targeted approach, and 20 of these were quantified. Among these, 15 proteins were quantified in both animals: 4f2hc (Slc3a2), Aqp0, Asct1 (Slc1a4), Asct2 (Slc1a5), Glut1 (Slc2a1), Hmit (Slc2a13), Insr, Lat1 (Slc7a5), Mct1 (Slc16a1), Mct2 (Slc16a7), Mct4 (Slc16a3), Mrp 4 (Abcc4), Na+/K+-ATPase, Oatp3a1 (Slco3a1), and Snat2 (Slc38a2). Overall, the global proteomics results supported the targeted proteomics results. Organic anion transporting polypeptide Oatp3a1 was detected and quantified for the first time in both rabbit (1.4 ± 0.4 fmol/cm2) and porcine (11.1 ± 5.3 fmol/cm2) CE. High expression levels were observed for L-type amino acid transporter, Lat1, which was quantified with newly selected extracellular domain peptides in rabbit (48.9 ± 11.8 fmol/cm2) and porcine (37.6 ± 11.5 fmol/cm2) CE. The knowledge of transporter protein expression in ocular barriers is a key factor in the successful design of new ocular drugs, pharmacokinetic modeling, understanding ocular diseases, and the translation to human.


Assuntos
Epitélio Corneano , Proteômica , Animais , Coelhos , Suínos , Epitélio Corneano/metabolismo , Proteômica/métodos , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Administração Oftálmica
3.
J Proteome Res ; 23(5): 1725-1743, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636938

RESUMO

Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).


Assuntos
Proteínas de Bactérias , Proteoma , Proteômica , Treponema pallidum , Treponema pallidum/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Massas , Sífilis/microbiologia , Sífilis/metabolismo
4.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958627

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica/métodos , Proteoma , Hepatócitos/metabolismo
5.
Anal Chim Acta ; 1284: 341972, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996163

RESUMO

Gamma (γ) carboxylation is an essential post-translational modification in vitamin K-dependent proteins (VKDPs), involved in maintaining critical biological homeostasis. Alterations in the abundance or activity of these proteins have pharmacological and pathological consequences. Importantly, low levels of fully γ-carboxylated clotting factors increase plasma des-γ-carboxy precursors resulting in little or no biological activity. Therefore, it is important to characterize the levels of γ-carboxylation that reflect the active state of these proteins. The conventional enzyme-linked immunosorbent assay for protein induced by vitamin K absence or antagonist II (PIVKA-II) quantification uses an antibody that is not applicable to distinguish different γ-carboxylation states. Liquid chromatography-mass spectrometry (LC-MS) approaches have been utilized to distinguish different γ-carboxylated proteoforms, however, these attempts were impeded by poor sensitivity due to spontaneous neutral loss of CO2 and simultaneous cleavage of the backbone bond in the collision cell. In this study, we utilized an alkaline mobile phase in combination with polarity switching (positive and negative ionization modes) to simultaneously identify and quantify γ-carboxylated VKDPs. The method was applied to compare Gla proteomics of prothrombin (FII) in 10 µL plasma samples of healthy control and warfarin-treated adults. We also identified surrogate non-Gla peptides for seven other VKDPs to quantify total (active plus inactive) protein levels. The total protein approach (TPA) was used to quantify absolute levels of the VKDPs in human plasma.


Assuntos
Protrombina , Vitamina K , Adulto , Humanos , Protrombina/química , Protrombina/genética , Protrombina/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacologia , Processamento de Proteína Pós-Traducional , Varfarina , Peptídeos/metabolismo
6.
J Proteome Res ; 22(12): 3683-3691, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897433

RESUMO

Among the various cell types that constitute the liver, Kupffer cells (KCs) are responsible for the elimination of gut-derived foreign products. Protein lysine acetylation (Kac) and lactylation (Kla) are dynamic and reversible post-translational modifications, and various global acylome studies have been conducted for liver and liver-derived cells. However, no such studies have been conducted on KCs. In this study, we identified 2198 Kac sites in 925 acetylated proteins and 289 Kla sites in 181 lactylated proteins in immortalized mouse KCs using global acylome technology. The subcellular distributions of proteins with Kac and Kla site modifications differed. Similarly, the specific sequence motifs surrounding acetylated or lactylated lysine residues also showed differences. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to better understand the differentially expressed proteins in the studies by Kac and Kla. In the newly identified Kla, we found K82 lactylation in the high-mobility group box-1 protein in the neutrophil extracellular trap formation category using KEGG enrichment analyses. Here, we report the first proteomic survey of Kac and Kla in KCs.


Assuntos
Células de Kupffer , Lisina , Animais , Camundongos , Lisina/metabolismo , Células de Kupffer/química , Células de Kupffer/metabolismo , Acetilação , Proteômica , Proteoma/análise , Processamento de Proteína Pós-Traducional
7.
MethodsX ; 11: 102306, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577163

RESUMO

We present a method and a simple system for high-pH RP-LC peptide fractionation of small sample amounts (30-60 µg), at micro-flow rates with micro-liter fraction collection using ammonium bicarbonate as an optimized buffer for system stability and robustness. The method is applicable to targeted mass spectrometry approaches and to in-depth proteomic studies where the amount of sample is limited. Using targeted proteomics with peptide standards, we present the method's analytical parameters, and potential in increasing the detection of low-abundance proteins that are difficult to quantify with direct targeted or global LC-MS analyses. This fractionation system increased peptide signals by up to 18-fold, while maintaining high quantitative precision, with high fractionation reproducibility across varied sample sets. In real applications, it increased the detection of targeted endogenous peptides by two-fold in a 25 cell-cycle-control protein panel, and in-depth MS analyses of nuclear extracts, it allowed the detection of up to 8,896 proteins with 138,417 peptides in 24-concatenated fractions compared to 3,344 proteins with 23,093 peptides without fractionation. In a relevant biological problem of CDK4/6-inhibitors and breast cancer, the method reproduced known information and revealed novel insights, highlighting that it can be successfully applied in studies involving low-abundance proteins and limited samples. •Tested nine high-pH buffer/solvent systems to obtain a robust, effective, and reproducible micro-flow fractionation method which was devoid of commonly encountered LC clogging/pressure issues after months of use.•Peptide enrichment method to improve detection and quantitation of low-abundance proteins in targeted and in-depth proteomic studies.•Can be applied to diverse protein samples where the available amount is limited.

8.
J Mol Cell Cardiol ; 176: 33-40, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657638

RESUMO

The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development. Herein, we integrated robust and quantitative targeted "top-down" and global "bottom-up" proteomic workflows to comprehensively define the dynamic landscape of the swine cardiac proteome throughout postnatal maturation. Using targeted top-down proteomics, we were able to identify significant alterations in sarcomere composition, providing new insight into the proteoform landscape of sarcomeres that can disassemble, a process necessary for productive CM proliferation. Furthermore, we quantified global changes in protein abundance using bottom-up proteomics, identified over 700 differentially expressed proteins throughout postnatal development, and mapped these proteins to changes in developmental and metabolic processes. We envision these results will help guide future investigations to comprehensively understand endogenous cardiac regeneration toward the development of novel therapeutic strategies for heart failure.


Assuntos
Proteoma , Sarcômeros , Animais , Suínos , Sarcômeros/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Coração , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Mamíferos/metabolismo
9.
J Transl Med ; 20(1): 606, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528667

RESUMO

BACKGROUND: Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors. METHODS: Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed. RESULTS: We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets. CONCLUSIONS: This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.


Assuntos
Cistadenocarcinoma Seroso , Dinamina III , Neoplasias Ovarianas , Feminino , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Dinamina III/genética , Multiômica , Mutação/genética , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Sobreviventes
10.
J Proteomics ; 263: 104601, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537666

RESUMO

Model-based assessment of drug pharmacokinetics in liver disease requires quantification of abundance and disease-related changes in hepatic enzymes and transporters. This study aimed to assess performance of three label-free methods [high N (HiN), intensity-based absolute quantification (iBAQ) and total protein approach (TPA)] against QconCAT-based targeted data in healthy and diseased (cancer and cirrhosis) liver tissue. Measurements were compared across methods and disease-to-control ratios provided a 'disease perturbation factor' (DPF) for each protein. Mean label-free measurements of targets correlated well (Pearson's coefficient, r = 0.91-0.98 p < 0.001) and with targeted data (r = 0.65-0.95, p < 0.001). Concordance with targeted data was generally moderate (Lin's concordance coefficient, ρc = 0.46-0.92), depending on methodology. Moderate precision and accuracy were observed for label-free methods (average fold error, AFE = 1.44-1.68; absolute average fold error, AAFE = 2.44-3.23). The DPF reconciled the data and indicated downregulated expression in cancer and cirrhosis, consistent with an inflammatory effect. HiN estimated perturbation consistently with targeted data (AFEHiN = 1.07, AAFEHiN = 1.57), whereas iBAQ overestimated (AFEiBAQ = 0.81, AAFEiBAQ = 1.67) and TPA underestimated (AFETPA = 1.37, AAFETPA = 1.65) disease effect. Progression from mild to severe cirrhosis was consistent with progressive decline in expression, reproduced by HiN but overestimated by iBAQ and underestimated by TPA (AFEHiN = 0.98, AFEiBAQ = 0.60, AFETPA = 1.24). DPF data confirmed non-uniform disease effect on drug-elimination pathways and progressive impact of disease severity. SIGNIFICANCE: This study demonstrated good correlation and moderate concordance between intensity-based label-free proteomic methods (HiN, iBAQ and TPA) and targeted data. Label-free measurements tended to overestimate abundance, but differences were reconciled using a disease perturbation factor (DPF) for each protein. With targeted data as a reference, HiN defined disease perturbation and the impact of disease progression consistently, indicating that the use of 'razor' peptides for quantification against an exogenous standard provides biologically sensible quantitative fingerprints of disease. Disease-driven perturbations in expression relative to healthy baseline are incorporated into drug kinetic models used to predict drug exposure in disease populations where clinical studies may not be feasible.


Assuntos
Cirrose Hepática , Proteômica , Humanos , Cirrose Hepática/metabolismo , Proteínas de Membrana Transportadoras , Microssomos Hepáticos/metabolismo , Proteômica/métodos
11.
Methods Mol Biol ; 2490: 157-177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486245

RESUMO

In this methods chapter, we describe the use of isobaric tags for relative and absolute quantification (iTRAQ) for the differential expression analysis of global proteins between embryonic stem cell samples. This protocol describes how proteins are collected from cell culture, digested and prepared so that peptides are labeled with these isobaric tags. Labeled digests are pooled, fractionated offline, and quantified using liquid chromatography-mass spectrometry (LC-MS). This offline fractionation allows for a greater separation and thus increased identification/quantification of peptides. This combined method enables large-scale, deep penetration into the proteome of embryonic stem cells. During quantification, the relative intensities of label-derived reporter ions represent the relative amount of peptide in each sample. Using search algorithms that integrate the generated data for the identified and quantified peptides allows the relative quantification of proteins in the samples. The isobaric tags can be used in a 4 or 8 multiplexed manner; however, using an 8-plex experimental setup allows for the simultaneous analysis of biological and technical replicates within the same mass spectrometry run, thus minimizing experimental variation and increasing the confidence in any identified expression differences.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Células-Tronco Embrionárias/metabolismo , Peptídeos/química , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
12.
Proc Natl Acad Sci U S A ; 119(11): e2115308119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263230

RESUMO

SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.


Assuntos
Compostos Benzidrílicos , Carcinogênese , Estrogênios , Glândulas Mamárias Humanas , Fenóis , Proteoma , Sulfonas , Compostos Benzidrílicos/toxicidade , Carcinogênese/induzido quimicamente , Estrogênios/toxicidade , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Fenóis/toxicidade , Proteoma/efeitos dos fármacos , Proteômica , Sulfonas/toxicidade
13.
J Biol Chem ; 297(1): 100877, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34139237

RESUMO

The human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA-binding protein, is mutated in an inherited form of autosomal recessive, nonsyndromic intellectual disability. To gain insight into neurological functions of ZC3H14, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model revealed that Nab2 controls final patterns of neuron projection within fully developed adult brains, but the role of Nab2 during development of the Drosophila brain is not known. Here, we identify roles for Nab2 in controlling the dynamic growth of axons in the developing brain mushroom bodies, which support olfactory learning and memory, and regulating abundance of a small fraction of the total brain proteome. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule-binding protein Futsch, the neuronal Ig-family transmembrane protein turtle, the glial:neuron adhesion protein contactin, the Rac GTPase-activating protein tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls the abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA-binding proteins in neurodevelopment.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Neurogênese , Proteoma/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Contactinas/genética , Contactinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Memória , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/genética
14.
FEBS Lett ; 594(23): 4134-4150, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128234

RESUMO

ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/química , Encéfalo/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pele/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Masculino , Espectrometria de Massas , Especificidade de Órgãos
15.
J Proteome Res ; 18(10): 3762-3769, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31483678

RESUMO

Lysine succinylation (Ksu) is a novel identified post-translational modification that is conserved from prokaryotes to eukaryotes. As a kind of acylation, Ksu was reported to have different functions than other acylations at lysine residues. However, recent studies on Ksu have mainly focused on plants and bacteria. Ksu studies in vertebrates are still rare; thus, the biological function of Ksu in mammals needs to be studied further. In this study, we performed global Ksu mapping in Danio rerio (zebrafish) using mass spectrometry-based proteomics with the enrichment of Ksu peptides by immunoprecipitation technology. As a result, we identified 552 Ksu sites in 164 proteins. The raw data are available via ProteomeXchange with the identifier PXD013173. Compared with our previous studies on lysine acetylation and crotonylation, Ksu plays a major role in diverse metabolic processes such as carbon metabolism and the tricarboxylic acid circle. In addition, we defined five new succinylation motifs: (su)KA, (su)KxxxxA, (su)KxxxxL, (su)KxA, and (su)KxV. In conclusion, our results provide a proteome-wide database to study Ksu in zebrafish, and our bioinformatics results facilitated the understanding of the role of Ksu in central metabolism.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Ácido Succínico/metabolismo , Peixe-Zebra/metabolismo , Animais , Cromatografia Líquida , Biologia Computacional , Bases de Dados de Proteínas , Imunoprecipitação , Lisina/metabolismo , Espectrometria de Massas em Tandem
16.
J Proteomics ; 202: 103368, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31028946

RESUMO

Halogenated 4-hydroxybenzylidene indolinones have been shown to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) to methicillin and vancomycin respectively. The mechanism of antibiotic re-sensitization was however not previously studied. Here, we probe the scope of antibiotic re-sensitization and present the global proteomics analysis of S. aureus treated with GW5074, a 4-hydroxybenzylidene indolinone compound. With a minimum inhibitory concentration (MIC) of 8 µg/mL against S. aureus, GW5074 synergized with beta-lactam antibiotics like ampicillin, carbenicillin and cloxacillin, the DNA synthesis inhibitor, ciprofloxacin, the protein synthesis inhibitor, gentamicin and the folate acid synthesis inhibitor, trimethoprim. Global proteomics analysis revealed that GW5074 treatment resulted in significant downregulation of enzymes involved in the purine biosynthesis. S. aureus proteins involved in amino acid metabolism and peptide transport were also observed to be downregulated. Interestingly, anti-virulence targets such as AgrC (a quorum sensing-related histidine kinase), AgrA (a quorum sensing-related response regulator) as well as downstream targets, such as hemolysins, lipases and proteases in S. aureus were also downregulated by GW5074. We observed that the peptidoglycan hydrolase, SceD was significantly upregulated. The activity of GW5074 on S. aureus suggests that the compound primes bacteria for the antibacterial action of ineffective antibiotics. SIGNIFICANCE: Antibiotic resistance continues to present significant challenges to the treatment of bacterial infections. Given that antibiotic resistance is a natural phenomenon and that it has become increasingly difficult to discover novel antibiotics, efforts to improve the activity of existing agents are worth pursuing. A few small molecules that re-sensitize resistant bacteria to traditional antibiotics have been described but the molecular details that underpin how these compounds work to re-sensitize bacteria remain largely unknown. In this report, global label-free quantitative proteomics was used to identify changes in the proteome that occurs when GW5074, a compound that re-sensitize MRSA to methicillin, is administered to S. aureus. The identification of pathways that are impacted by GW5074 could help identify novel targets for antibiotic re-sensitization.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Enterococcus faecalis/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Oxindóis/farmacologia , Proteômica
17.
Proteomics ; 18(24): e1800200, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30371990

RESUMO

Sample preparation is a critical step in the proteomic workflow. Numerous different approaches are used, tailored to the type of sample, the aims of the experiment, analytical method, and to an extent, user preference. This has resulted in large variation in reported protein abundances. In this study, the complementarity of two different sample preparation techniques is demonstrated for the study of absorption, distribution, metabolism, and excretion (ADME) related proteins from pig liver tissue. Filter-aided sample preparation (FASP) is a well-established and widely used method, while gel-aided sample preparation (GASP) is a relatively new method optimized and simplified from previous gel-associated digestion techniques. To investigate each method, the number of peptides and proteins characterized, reproducibility of results, and their real-time application are examined. While both methods have their merits and limitations, for example, FASP is the less technical of the two methods, while GASP is time efficient, ultimately the two methods show significant differences in the peptides identified and therefore, the use of both methods should be considered when examining and quantifying ADME related proteins. Data are available via ProteomeXchange with identifier PXD011324.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Géis/química , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/isolamento & purificação , Proteoma/metabolismo , Manejo de Espécimes/métodos , Animais , Filtração , Suínos
18.
Artigo em Inglês | MEDLINE | ID: mdl-25463202

RESUMO

Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and first-dimensional fractionation is widely used for reducing sample complexity in large-scale proteomic profiling experiments. However, the limited number of proteins identified and the relatively long running time are a barrier to the successful application of this approach. In this study, off-line high pH reversed-phase fractionation (RPF) was combined with nano-LC-MS/MS in order to develop an improved method for global proteomic profiling of different cell lines. In the first dimensional reverse phase HPLC separation, 300 µg of digested cell protein was separated into 78 fractions under high pH conditions and condensed into 26 fractions for the second nano-LC-MS/MS analysis at low pH. The chromatographic conditions for the first and second steps were optimized, and the accuracy and reproducibility of protein quantification were investigated with an average Pearson correlation coefficient of 0.94. The method was then applied in the identification of proteins in six common cell lines (DMS, MFM, HepG2, U2OS, 293T and yeast), which resulted in identification of 7300-8500 and 8956 proteins in heavy/light labeled and label-free cell samples, respectively, in 1.5 days. The performance of the developed method was compared with isoelectric focusing (IEF)-nano-LC-MS/MS and the previously reported method; and off-line high pH RPF-nano-LC-MS/MS proved advantageous in terms of the number of proteins identified and the analytical time needed to achieve a successful global proteomic profiling outcome. The RPF-nano-LC-MS/MS method identified more proteins from low abundance (150 µg) samples with an average sequence coverage for each cell line of 23.4-35.1%. RPF-nano-LC-MS/MS may therefore be an efficient alternative tool for achieving improved proteomic coverage of multiple cell lines.


Assuntos
Linhagem Celular/química , Cromatografia Líquida/métodos , Proteínas/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular/metabolismo , Fracionamento Químico , Humanos , Proteínas/isolamento & purificação , Proteínas/metabolismo
19.
J Biol Chem ; 289(11): 7615-29, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24492610

RESUMO

Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Assuntos
Mitocôndrias/metabolismo , Traumatismo por Reperfusão/patologia , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Transporte de Elétrons , Eletrofisiologia , Células HEK293 , Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Células Musculares/citologia , Isquemia Miocárdica/patologia , Oxigênio/química , Consumo de Oxigênio , Proteômica , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA