RESUMO
Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.
Assuntos
Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Animais , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Masculino , Pessoa de Meia-Idade , Feminino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangue , Ornitina/análogos & derivados , Aldeído Redutase/metabolismo , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/sangue , Polímeros/química , Idoso , Camundongos Knockout , ImidazóisRESUMO
Prolonged hyperglycemia generates advanced glycation end-products (AGEs), which are believed to be involved in the pathogenesis of diabetic complications. In the present study, we developed a polyclonal antibody against fructose-modified proteins (Fru-P antibody) and identified its epitope as glucoselysine (GL) by NMR and LC-electrospray ionization (ESI)- quadrupole TOF (QTOF) analyses and evaluated its potential role in diabetes sequelae. Although the molecular weight of GL was identical to that of fructoselysine (FL), GL was distinguishable from FL because GL was resistant to acid hydrolysis, which converted all of the FLs to furosine. We also detected GL in vitro when reduced BSA was incubated with fructose for 1 day. However, when we incubated reduced BSA with glucose, galactose, or mannose for 14 days, we did not detect GL, suggesting that GL is dominantly generated from fructose. LC-ESI-MS/MS experiments with synthesized [13C6]GL indicated that the GL levels in the rat eye lens time-dependently increase after streptozotocin-induced diabetes. We observed a 31.3-fold increase in GL 8 weeks after the induction compared with nondiabetic rats, and Nϵ-(carboxymethyl)lysine and furosine increased by 1.7- and 21.5-fold, respectively, under the same condition. In contrast, sorbitol in the lens levelled off at 2 weeks after diabetes induction. We conclude that GL may be a useful biological marker to monitor and elucidate the mechanism of protein degeneration during progression of diabetes.