Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Clin Pharmacol Drug Dev ; 13(6): 696-709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38363061

RESUMO

Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t1/2 of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.


Assuntos
Inibidores Enzimáticos , Doença de Fabry , Doença de Gaucher , Glucosiltransferases , Voluntários Saudáveis , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosiltransferases/antagonistas & inibidores , Adulto , Masculino , Feminino , Administração Oral , Adulto Jovem , Pessoa de Meia-Idade , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/efeitos adversos , Doença de Fabry/tratamento farmacológico , Relação Dose-Resposta a Droga , Interações Alimento-Droga , Método Duplo-Cego , Estudos Cross-Over , Adolescente
2.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300320

RESUMO

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Assuntos
Orthobunyavirus , Glucosilceramidas , Ligação Viral , Lipidômica , Espectrometria de Massas
3.
ChemMedChem ; 19(10): e202300641, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38329692

RESUMO

Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.


Assuntos
Inibidores Enzimáticos , Doença de Gaucher , Doença de Gaucher/tratamento farmacológico , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Química Farmacêutica , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Glucosilceramidase/química , Terapia de Reposição de Enzimas , Estrutura Molecular
4.
Biomedicines ; 11(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831084

RESUMO

Horse-derived ceramide (HC), which contains galactosylceramides as its main component, significantly improves skin symptoms when applied topically to patients with atopic dermatitis. We speculated that efficacy resulted from the amelioration of epidermal ceramide metabolism, and we characterized those effects using reconstructed human epidermal equivalents. Lipid analysis, RT-PCR and Western blotting revealed that HC significantly increased the total ceramide content of the stratum corneum (SC), accompanied by significantly increased gene and/or protein expression levels of ceramide synthase (CERS) 3, fatty acid elongase (ELOVL) 4, glucosylceramide synthase (GCS), ß-glucocerebrosidase, sphingomyelin synthase and acid sphingomyelinase. Mechanistic analyses using cultures of primary human keratinocytes revealed the marked stimulatory effects of HC on the mRNA expression levels of CERS3, ELOVL4 and GCS under high calcium-derived differentiation conditions. Signaling analyses demonstrated that an antagonist of PPARß/δ significantly abrogated the HC-stimulated mRNA expression levels of GCS, CERS3 and ELOVL4. GW9662, an antagonist of PPARγ, significantly abolished the HC-up-regulated mRNA expression levels of GCS and ELOVL4, but not of CERS3. These findings suggest that HC has the distinct potential to accentuate the expression of GCS, CERS3 and ELOVL4 via the activation of PPARß/δ and/or PPARγ to accelerate ceramide synthesis in the SC.

5.
Methods Mol Biol ; 2613: 271-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587085

RESUMO

Glucosylceramide synthase can be targeted by high affinity small molecular weight inhibitors for the study of glycosphingolipid metabolism and function or for the treatment of glycosphingolipid storage disorders, including Gaucher and Fabry disease. This work is exemplified by the discovery and development of eliglustat tartrate, the first stand-alone small chemical entity approved for the treatment of Gaucher disease type 1. The development of inhibitors of glucosylceramide synthase that have utility for either research or clinical purposes begins with a testing funnel for screening candidate inhibitors for activity against this enzyme and for activity in lowering the content of glucosylceramide in intact cells. Two common assays for glucosylceramide synthase, one enzyme based and another cell based, are the focus of this chapter.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Glucosiltransferases/metabolismo , Glucosilceramidas , Glicoesfingolipídeos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
6.
Biochem Biophys Res Commun ; 642: 192-200, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36586187

RESUMO

Transforming growth factor (TGF)-ß/Smad pathway is implicated in the pathogenesis of liver fibrosis, a condition characterized by excessive deposition of extracellular matrix (ECM) proteins such as collagen in response to chronic inflammation. It has been reported that ceramide regulates collagen production through TGF-ß/Smad pathway activation. In this study, we examined whether miglustat, an inhibitor of glucosylceramide synthase, can suppress liver fibrosis by reducing TGF-ß/Smad pathway activity. Human hepatic stellate cells (HHSteCs) were cultured with TGF-ß and multiple miglustat concentrations to examine dose-dependent effects on the expression levels of ECM-related genes and Smad proteins. To evaluate the efficacy of miglustat for fibrosis mitigation, C57BL/6 mice were treated with carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis, followed by combined CCl4 plus miglustat for a further 2 weeks. To examine if miglustat can also prevent fibrosis, mice were treated with CCl4 for 2 weeks, followed by CCl4 plus miglustat for 2 weeks. Miglustat dose-dependently downregulated expression of α-smooth muscle actin and ECM components in TGF-ß-treated HHSteCs. Both phosphorylation and nuclear translocation of Smad2 and Smad3 were also suppressed by miglustat treatment. Sirius-Red staining and hydroxyproline assays of model mouse liver samples revealed that miglustat reduced fibrosis, an effect accompanied by decreased expression of ECM. Our findings suggest that miglustat can both prevent and reverse liver fibrosis by inhibiting TGF-ß/Smad pathway.


Assuntos
Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Tetracloreto de Carbono/farmacologia , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Bioorg Med Chem Lett ; 77: 129039, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341811

RESUMO

Glucosylceramide synthase (GCS) has drawn much attention as an attractive protein target in the disease pathways of Parkinson's Disease (PD) and lysosomal storage disorders, such as Gaucher's Disease (GD). In previous our study, T-036 and its analogue, 2a, were discovered as novel GCS inhibitors. To further improve activity of this chemical series, SAR was investigated on the fused pyridyl ring core of 2a by employing a photoredox reaction that significantly reduced synthetic demand. Herein, we successfully applied the decarboxylation C-H alkylation photoredox reaction to introduce a wide variety of substituents at the 6-position of the fused pyridine core scaffold. This quick SAR acquisition facilitated the swift identification of the potent GCS inhibitors 2b (IC50 = 5.9 nM) and 2g (IC50 = 3.6 nM). Moreover, 2b exhibited superior in vivo potency to that of our previously reported lead compound, T-036.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Glucosiltransferases , Doença de Gaucher/metabolismo
8.
FEBS Lett ; 596(18): 2400-2408, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796054

RESUMO

Glycosphingolipids (GSLs) fulfil diverse functions in cells. Abnormalities in their metabolism are associated with specific pathologies and, consequently, the pharmacological modulation of GSLs is considered a therapeutic avenue. The accurate measurement of in situ metabolism of GSLs and the modulatory impact of drugs is warranted. Employing synthesised sphingosine and sphinganine containing 13 C atoms, we developed a method to monitor the de novo synthesis of glucosylceramide, the precursor of complex GSLs, by the enzyme glucosylceramide synthase (GCS). We show that feeding cells with isotope-labelled precursor combined with liquid chromatography-mass spectrometry (MS)/MS analysis allows accurate determination of the IC50 values of therapeutically considered inhibitors (iminosugars and ceramide mimics) of GCS in cultured cells. Acquired data were comparable to those obtained with an earlier method using artificial fluorescently labelled ceramide to feed cells.


Assuntos
Glucosilceramidas , Esfingosina , Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Glicoesfingolipídeos/metabolismo , Espectrometria de Massas , Esfingosina/farmacologia
9.
Mol Genet Metab Rep ; 31: 100862, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782623

RESUMO

The use of available treatments for Fabry disease (FD) (including enzyme replacement therapy [ERT]) may be restricted by their limited symptom improvement and mode of administration. Lucerastat is currently being investigated in the MODIFY study as oral substrate reduction therapy for the treatment of FD. By reducing the net globotriaosylceramide (Gb3) load in tissues, lucerastat has disease-modifying potential to improve symptoms and delay disease progression. MODIFY is a multicenter, double-blind, randomized, placebo-controlled, parallel-group Phase 3 study (ClinicalTrial.gov: NCT03425539); here we present the rationale and design of this study. Eligible adults with a genetically confirmed diagnosis of FD and FD-specific neuropathic pain entered screening. Patients were randomized (2:1) to receive either oral lucerastat twice daily or placebo for 6 months; treatment allocation was stratified according to sex and ERT treatment status. The main objectives of MODIFY are to assess the effects of lucerastat on neuropathic pain, gastrointestinal (GI) symptoms, FD biomarkers, and determine its safety and tolerability. Neuropathic pain and GI symptoms are key features of FD that have a significant impact on quality of life. Despite various tools available to assess pain and GI symptoms, there are currently limited tools available to assess neuropathic and GI symptoms in FD, validated according to health authority guidelines. Based on FDA recommendations, we undertook a patient-reported outcome (PRO) validation study, using a novel eDiary-based PRO tool to assess the validity of evaluating neuropathic pain as a primary efficacy endpoint in MODIFY. Results from the PRO validation study are included. To date, MODIFY is the largest Phase 3 clinical study conducted in patients with FD. Enrollment to MODIFY is now complete, with 118 patients randomized. Results will be presented in a separate publication. Long-term effects of lucerastat are being assessed in the ongoing open-label extension study (NCT03737214).

10.
Drug Des Devel Ther ; 16: 2199-2211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855741

RESUMO

The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Adamantano/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , Piridinas , SARS-CoV-2 , Esfingolipídeos
11.
J Lipid Res ; 63(6): 100218, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489416

RESUMO

A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Lipídeos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
12.
Life (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330102

RESUMO

Cholangiocarcinoma (CCA) is an aggressive tumor of the biliary epithelium with poor survival that shows limited response to conventional chemotherapy. Increased expression of glucosylceramide synthase (GCS) contributes to drug resistance and the progression of various cancers; the expression profiles of GCS (UGCG) and the genes for glucocerebrosidases 1, 2, and 3 (GBA1, GBA2, and GBA3) were therefore studied in CCA. The biological functions of GCS for cell proliferation and cisplatin sensitivity in CCA were explored. GCS expression was higher in CCA tumor tissues than that of GBA1, GBA2, and GBA3. Verification of GCS expression in 29 paired frozen CCA tissues showed that 8 of 29 cases (27.6%) had high GCS expression. The expression of GCS and GBA2 was induced in CCA cell lines following low-dose cisplatin treatment. Suppression of GCS by either palmitoylamino-3-morpholino-1-propanol (PPMP), GCS knockdown or a combination of the two resulted in reduced cell proliferation. These treatments enhanced the effect of cisplatin-induced CCA cell death, increased the expression of apoptotic proteins and reduced phosphorylation of ERK upon cisplatin treatment. Taken together, inhibition of the GCS increased cisplatin-induced CCA apoptosis via the inhibition of the ERK signaling pathway. Thus, targeting GCS might be a strategy for CCA treatment.

13.
Mol Genet Metab Rep ; 30: 100843, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242574

RESUMO

GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients.

14.
Med Oncol ; 39(3): 35, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059910

RESUMO

Resveratrol possesses well-defined anti-carcinogenic activities. However, how resveratrol exerts its anti-leukemic actions by modulating anti-apoptotic ceramide catabolism enzymes, mainly sphingosine kinase (SK-1) and glucosylceramide synthase (GCS), in FLT3-ITD AML remains unclear. Resveratrol, SKI II (SK inhibitor) and PDMP (GCS inhibitor) were evaluated alone or in combinations for their effect on cell proliferation (MTT assay), apoptosis (annexin V-FITC/PI staining by flow cytometry) and cell cycle progression (PI staining by flow cytometry) in MOLM-13 and MV4-11 cells. The combination indexes (CIs) were calculated based on cell proliferation data using CompuSyn software. Caspase-3 and PARP activation, changes in SK-1 and GCS levels by resveratrol alone or PARP cleavage in co-treatments were determined by western blot. Resveratrol and inhibitors alone inhibited cell proliferation in a dose- and time-dependent manner. Resveratrol downregulated SK-1 and GCS expression in both cell lines. It induced apoptosis by phosphatidylserine (PS) exposure together with caspase-3 and PARP cleavage and arrested the cell cycle slightly at the S phase. Co-administrations intensified resveratrol's effect by inhibiting cell proliferation synergistically (A CI of < 1) or additively (A CI 1.0-1.1) and inducing apoptosis via PS relocalization and PARP cleavage. Resveratrol plus SKI II did not affect cell cycle progression significantly, however, resveratrol plus PDMP blocked cycle progression at G0/G1 and S phases for MOLM-13 cells and MV4-11 cells, respectively. Overall, resveratrol may inhibit FLT3-ITD AML cell proliferation by inhibiting ceramide catabolism and be evaluated as a chemopreventive after detailed analysis of the crosstalk between resveratrol and ceramide catabolism pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Glucosiltransferases , Humanos , Leucemia Mieloide Aguda/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Tirosina Quinase 3 Semelhante a fms/metabolismo
15.
J Parkinsons Dis ; 12(2): 557-570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34897099

RESUMO

BACKGROUND: Glucocerebrosidase gene (GBA) mutations influence risk and prognosis of Parkinson's disease (PD), possibly through accumulation of glycosphingolipids, including glucosylceramide (GL-1). Venglustat is a novel, brain penetrant glucosylceramide synthase inhibitor. OBJECTIVE: Evaluate venglustat pharmacology, safety, and tolerability in patients with PD and GBA mutations (GBA-PD). METHODS: Part 1 of the phase 2 MOVES-PD trial (NCT02906020) was a randomized, double-blinded, placebo-controlled, dose-escalation study performed in six countries. Eligible participants included Japanese and non-Japanese patients aged 18-80 years with PD diagnosis and heterozygous GBA mutation. Participants were randomized to three doses of once-daily oral venglustat or placebo and were followed up to 36 weeks (Japanese participants: 52 weeks). Primary endpoint was venglustat safety and tolerability versus placebo. Secondary and exploratory endpoints included venglustat pharmacokinetics and pharmacodynamics. RESULTS: Participants (N = 29) received venglustat (Japanese, n = 9; non-Japanese, n = 13) or placebo (n = 3; n = 4). Eight (89%) Japanese and 12 (92%) non-Japanese venglustat-treated participants experienced at least one adverse event (AE) versus two (67%) and four (100%) participants from the respective placebo groups. Most AEs were mild or moderate; no serious AEs or deaths occurred. Two venglustat-treated non-Japanese participants discontinued due to AEs (confusional state and panic attack). Over 4 weeks, venglustat exposure in plasma and cerebrospinal fluid (CSF) increased, and GL-1 levels in plasma and CSF decreased, both in a dose-dependent manner. At the highest dose, CSF GL-1 decreased by 72.0% in Japanese and 74.3% in non-Japanese participants. CONCLUSION: Venglustat showed favorable safety and tolerability in MOVES-PD Part 1 and target engagement was achieved in CSF.


Assuntos
Glucosilceramidase , Doença de Parkinson , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores Enzimáticos/efeitos adversos , Glucosilceramidase/genética , Glucosilceramidas , Humanos , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Adulto Jovem
16.
In Vivo ; 35(6): 3111-3123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697142

RESUMO

BACKGROUND/AIM: Glycosphingolipids are known to be involved in bone metabolism. However, their roles and regulatory mechanisms in osteoblast proliferation are largely unknown. In this study, we examined the effects of inhibitors of glucosylceramide synthase (GCS), which is responsible for the generation of all glycosphingolipids, on osteoblast proliferation. MATERIALS AND METHODS: We analyzed the expression of glycosphingolipids and cell growth in MC3T3-E1 mouse osteoblast cells treated with the GCS inhibitors miglustat, D-PDMP and D-PPMP. We also conducted microarray analysis and RNA interference to identify genes involved in cell growth regulated by GCS. RESULTS: Glycosphingolipids GD1a and Gb4 expressed in MC3T3-E1 cells, were suppressed by GCS inhibitors. Furthermore, the proliferation of MC3T3-E1 cells was suppressed by the inhibitors. Using microarray analysis, we predicted nine genes (Fndc1, Acta2, Igfbp5, Cox6a2, Cth, Mymk, Angptl6, Mab21l2, and Igsf10) suppressed by all three inhibitors. Furthermore, partial silencing of Angptl6 by RNA interference reduced MC3T3-E1 cell growth. CONCLUSION: These results show that GCS regulates proliferation through Angptl6 in osteoblasts.


Assuntos
Glucosiltransferases , Osteoblastos , Proteína 6 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Diferenciação Celular , Proliferação de Células , Proteínas do Olho , Glucosiltransferases/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos
17.
Microorganisms ; 9(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34683478

RESUMO

In 90% of the cases, childhood hemolytic uremic syndrome (HUS) is caused by an infection with the Shiga toxin (Stx) producing E. coli bacteria (STEC-HUS). Stx preferentially binds to its receptor, the glycosphingolipid, globotriaosylceramide (Gb3), present on the surface of human kidney cells and various organs. In this study, the glycosphingolipid pathway in endothelial cells was explored as therapeutic target for STEC-HUS. Primary human glomerular microvascular endothelial cells (HGMVECs) and human blood outgrowth endothelial cells (BOECs) in quiescent and activated state were pre-incubated with Eliglustat (Cerdelga®; glucosylceramide synthase inhibitor) or Agalsidase alpha (Replagal®; human cell derived alpha-galactosidase) in combination with various concentrations of Stx2a. Preincubation of endothelial cells with Agalsidase resulted in an increase of α-galactosidase activity in the cell, but had no effect on the binding of Stx to the cell surface when compared to control cells. However, the incubation of both types of endothelial cells incubated with or without the pro-inflammatory cytokine TNFα in combination with Eliglustat resulted in significant decrease of Stx binding to the cell surface, a decrease in protein synthesis by Stx2a, and diminished cellular Gb3 levels as compared to control cells. In conclusion, inhibition of the synthesis of Gb3 may be a potential future therapeutic target to protect against (further) endothelial damage caused by Stx.

18.
PeerJ ; 9: e12138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611503

RESUMO

BACKGROUND: Sphingolipids produce pleiotropic signaling pathways, and participate in the pathological mechanism of hepatocyte apoptosis and necrosis during liver injury. However, the role of glucosylceramide synthase (GCS)-key enzyme that catalyzes the first glycosylation step, in liver injury is still vague. METHODS: All experiments were conducted using 7-9-week-old pathogen-free male C57BL/6 mice. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected in murine models of liver disease, in addition to histological characterization of liver injuries. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative expression of the GCS, matrix metallopeptidase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) genes. The GCS was observed through a fluorescence microscope, and the flow cytometry was used to detect hepatocyte apoptosis. The concentrations of serum IL-4, IL-6, and IL-10 were measured using enzyme-linked immune-sorbent assay (ELISA) kit. MMP-1 and TIMP-1 protein expression was measured via western blot (WB) analysis. RESULTS: Con A is often used as a mitogen to activate T lymphocytes and promote mitosis. A single dose of Con A injected intravenously will cause a rapid increase of ALT and AST, which is accompanied by the release of cytokines that cause injury and necrosis of hepatocytes. In this study, we successfully induced acute immune hepatitis in mice by Con A. Con A administration resulted in GCS upregulation in liver tissues. Moreover, the mice in the Con A group had significantly higher levels of ALT, AST, IL-4, IL-6, IL-10 and increased hepatocyte apoptosis than the control group. In contrast, all of the aforementioned genes were significantly downregulated after the administration of a GCS siRNA or Genz-123346 (i.e., a glucosylceramide synthase inhibitor) to inhibit the GCS gene. Additionally, the histopathological changes observed herein were consistent with our ALT, AST, IL-4, IL-6, and IL-10 expression results. However, unlike this, hepatocyte apoptosis has been further increased on the basis of the Con A group. Moreover, our qRT-PCR and WB results indicated that the expression of MMP-1 in the Con A group was significantly lower than that in the control group, whereas TIMP-1 exhibited the opposite trend. Conversely, MMP-1 expression in the GCS siRNA and Genz-123346 groups was higher than that in the Con A group, whereas TIMP-1 expression was lower. CONCLUSIONS: GCS inhibition reduces Con A-induced immune-mediated liver injury in mice, which may be due to the involvement of GCS in the hepatocyte repair process after injury.

19.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638879

RESUMO

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC.


Assuntos
Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo , Dioxanos/farmacologia , Glicoesfingolipídeos , Pirrolidinas/farmacologia , Esferoides Celulares , Animais , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Células HCT116 , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
20.
EMBO J ; 40(20): e107766, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34516001

RESUMO

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldina A/farmacologia , Ceramidas/metabolismo , Toxina da Cólera/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Toxina Shiga/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA