Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298853

RESUMO

Glycogen is the primary storage polysaccharide in bacteria and animals. It is a glucose polymer linked by α-1,4 glucose linkages and branched via α-1,6-linkages, with the latter reaction catalyzed by branching enzymes. Both the length and dispensation of these branches are critical in defining the structure, density, and relative bioavailability of the storage polysaccharide. Key to this is the specificity of branching enzymes because they define branch length. Herein, we report the crystal structure of the maltooctaose-bound branching enzyme from the enterobacteria E. coli. The structure identifies three new malto-oligosaccharide binding sites and confirms oligosaccharide binding in seven others, bringing the total number of oligosaccharide binding sites to twelve. In addition, the structure shows distinctly different binding in previously identified site I, with a substantially longer glucan chain ordered in the binding site. Using the donor oligosaccharide chain-bound Cyanothece branching enzyme structure as a guide, binding site I was identified as the likely binding surface for the extended donor chains that the E. coli branching enzyme is known to transfer. Furthermore, the structure suggests that analogous loops in branching enzymes from a diversity of organisms are responsible for branch chain length specificity. Together, these results suggest a possible mechanism for transfer chain specificity involving some of these surface binding sites.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Escherichia coli , Escherichia coli/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glucanos/metabolismo , Oligossacarídeos
2.
Protein Sci ; 31(7): e4376, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762722

RESUMO

The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.


Assuntos
Agrobacterium tumefaciens , Serina , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Frutose , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glicogênio/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Fosfatos , Serina/genética , Sulfatos
3.
FASEB J ; 34(1): 3-15, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914592

RESUMO

Liver glycogen α particles are molecularly fragile in diabetic mice, and readily form smaller ß particles, which degrade more rapidly to glucose. This effect is well associated with the loss of blood-glucose homeostasis in diabetes. The biological mechanism of such fragility is still unknown; therefore, there are perceived opportunities that could eventually lead to new means to manage type 2 diabetes. The hierarchical structures of glycogen particles are controlled by the underlying biosynthesis/degradation process that involves various enzymes, including, for example, glycogen synthase (GS) and glycogen-branching enzyme (GBE). Recent studies have shown that fragile glycogen α particles in diabetic mice have longer chains and a higher molecular density compared to wild-type mice, indicating an enhanced enzymatic activity ratio of GS to GBE in diabetes. Furthermore, it has been shown that with an improved blood glucose homeostasis, the glycogen fragility in diabetic mice can be restored by treatment with active ingredients from traditional Chinese medicine, yet the underlying mechanism is unknown. In this review, we summarize recent advances in understandings glycogen fragility from the perspectives of glycogen biosynthesis/degradation, glycogen hierarchical structures, and its relation to diabetes. Importantly, we for the first time set GS/GBE activity ratio as the therapeutic target for diabetes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Glicogênio/química , Glicogênio/metabolismo , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Animais , Sistemas de Liberação de Medicamentos , Glucose/metabolismo , Humanos
4.
Curr Res Struct Biol ; 2: 89-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34235472

RESUMO

Glycogen and starch are the major carbon and energy reserve polysaccharides in nature, providing living organisms with a survival advantage. The evolution of the enzymatic machinery responsible for the biosynthesis and degradation of such polysaccharides, led the development of mechanisms to control the assembly and disassembly rate, to store and recover glucose according to cell energy demands. The tetrameric enzyme ADP-glucose pyrophosphorylase (AGPase) catalyzes and regulates the initial step in the biosynthesis of both α-polyglucans. AGPase displays cooperativity and allosteric regulation by sensing metabolites from the cell energy flux. The understanding of the allosteric signal transduction mechanisms in AGPase arises as a long-standing challenge. In this work, we disclose the cryoEM structures of the paradigmatic homotetrameric AGPase from Escherichia coli (EcAGPase), in complex with either positive or negative physiological allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP respectively, both at 3.0 Å resolution. Strikingly, the structures reveal that FBP binds deeply into the allosteric cleft and overlaps the AMP site. As a consequence, FBP promotes a concerted conformational switch of a regulatory loop, RL2, from a "locked" to a "free" state, modulating ATP binding and activating the enzyme. This notion is strongly supported by our complementary biophysical and bioinformatics evidence, and a careful analysis of vast enzyme kinetics data on single-point mutants of EcAGPase. The cryoEM structures uncover the residue interaction networks (RIN) between the allosteric and the catalytic components of the enzyme, providing unique details on how the signaling information is transmitted across the tetramer, from which cooperativity emerges. Altogether, the conformational states visualized by cryoEM reveal the regulatory mechanism of EcAGPase, laying the foundations to understand the allosteric control of bacterial glycogen biosynthesis at the molecular level of detail.

5.
J Biol Chem ; 294(4): 1338-1348, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30401744

RESUMO

The pathways for biosynthesis of glycogen in bacteria and starch in plants are evolutionarily and biochemically related. They are regulated primarily by ADP-glucose pyrophosphorylase, which evolved to satisfy metabolic requirements of a particular organism. Despite the importance of these two pathways, little is known about the mechanism that controls pyrophosphorylase activity or the location of its allosteric sites. Here, we report pyruvate-bound crystal structures of ADP-glucose pyrophosphorylase from the bacterium Agrobacterium tumefaciens, identifying a previously elusive activator site for the enzyme. We found that the tetrameric enzyme binds two molecules of pyruvate in a planar conformation. Each binding site is located in a crevice between the C-terminal domains of two subunits where they stack via a distinct ß-helix region. Pyruvate interacts with the side chain of Lys-43 and with the peptide backbone of Ser-328 and Gly-329 from both subunits. These structural insights led to the design of two variants with altered regulatory properties. In one variant (K43A), the allosteric effect was absent, whereas in the other (G329D), the introduced Asp mimicked the presence of pyruvate. The latter generated an enzyme that was preactivated and insensitive to further activation by pyruvate. Our study furnishes a deeper understanding of how glycogen biosynthesis is regulated in bacteria and the mechanism by which transgenic plants increased their starch production. These insights will facilitate rational approaches to enzyme engineering for starch production in crops of agricultural interest and will promote further study of allosteric signal transmission and molecular evolution in this important enzyme family.


Assuntos
Agrobacterium tumefaciens/enzimologia , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Piruvatos/metabolismo , Sítios de Ligação , Glucose-1-Fosfato Adenililtransferase/genética , Glicogênio/biossíntese , Glicogênio/química , Modelos Moleculares , Estrutura Molecular
6.
J Agric Food Chem ; 65(35): 7764-7773, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28780871

RESUMO

High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, ß, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.


Assuntos
Crassostrea/genética , Glicogênio/biossíntese , Frutos do Mar/análise , Animais , Crassostrea/enzimologia , Crassostrea/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Front Chem ; 5: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674689

RESUMO

The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism toward the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme toward the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near ~600-fold higher that other nucleotides, whereas in the absence of activator was only ~3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA