Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499311

RESUMO

Rhodotorula dairenensis ß-fructofuranosidase is a highly glycosylated enzyme with broad substrate specificity that catalyzes the synthesis of 6-kestose and a mixture of the three series of fructooligosaccharides (FOS), fructosylating a variety of carbohydrates and other molecules as alditols. We report here its three-dimensional structure, showing the expected bimodular arrangement and also a unique long elongation at its N-terminus containing extensive O-glycosylation sites that form a peculiar arrangement with a protruding loop within the dimer. This region is not required for activity but could provide a molecular tool to target the dimeric protein to its receptor cellular compartment in the yeast. A truncated inactivated form was used to obtain complexes with fructose, sucrose and raffinose, and a Bis-Tris molecule was trapped, mimicking a putative acceptor substrate. The crystal structure of the complexes reveals the major traits of the active site, with Asn387 controlling the substrate binding mode. Relevant residues were selected for mutagenesis, the variants being biochemically characterized through their hydrolytic and transfructosylating activity. All changes decrease the hydrolytic efficiency against sucrose, proving their key role in the activity. Moreover, some of the generated variants exhibit redesigned transfructosylating specificity, which may be used for biotechnological purposes to produce novel fructosyl-derivatives.


Assuntos
Rhodotorula , beta-Frutofuranosidase , beta-Frutofuranosidase/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Oligossacarídeos/química , Especificidade por Substrato , Sacarose/metabolismo
2.
FEBS J ; 282(24): 4782-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26426731

RESUMO

Sucrolytic enzymes catalyse sucrose hydrolysis or the synthesis of fructooligosaccharides (FOSs), a prebiotic in human and animal nutrition. FOS synthesis capacity differs between sucrolytic enzymes. Amino-acid-sequence-based classification of FOS synthesizing enzymes would greatly facilitate the in silico identification of novel catalysts, as large amounts of sequence data lie untapped. The development of a bioinformatics tool to rapidly distinguish between high-level FOSs synthesizing predominantly sucrose hydrolysing enzymes from fungal genomic data is presented. Sequence comparison of functionally characterized enzymes displaying low- and high-level FOS synthesis revealed conserved motifs unique to each group. New light is shed on the sequence context of active site residues in three previously identified conserved motifs. We characterized two enzymes predicted to possess low- and high-level FOS synthesis activities based on their conserved motif sequences. FOS data for the enzymes confirmed our successful prediction of their FOS synthesis capacity. Structural comparison of enzymes displaying low- and high-level FOS synthesis identified steric hindrance between nystose and a long loop region present only in low-level FOS synthesizers. This loop is proposed to limit the synthesis of FOS species with higher degrees of polymerization, a phenomenon observed among enzymes displaying low-level FOS synthesis. Conserved sequence motifs surrounding catalytic residues and a distant structural determinant were identifiers of FOS synthesis capacity and allow for functional annotation of sucrolytic enzymes directly from amino acid sequence. The tool presented may also be useful to study the structure-function relationships of ß-fructofuranosidases by identifying mutations present in a group of closely related enzymes displaying similar function.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Hexosiltransferases/metabolismo , beta-Frutofuranosidase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional/métodos , Sequência Conservada , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Sistemas Inteligentes , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Hexosiltransferases/química , Hexosiltransferases/classificação , Hexosiltransferases/genética , Cinética , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/classificação , beta-Frutofuranosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA