Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mult Scler ; 29(3): 475-478, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36514274

RESUMO

The central vein sign (CVS) has been proposed as a biomarker of multiple sclerosis (MS). In adult-onset MS (AOMS), 40%-threshold of CVS positive (+) lesions demonstrated high accuracy for MS diagnosis. However, CVS+ lesions' performance has not been characterized in paediatric-onset (POMS) yet. We compared the CVS contribution to MS diagnosis in 10 POMS and 12 disease-duration-matched AOMS patients. Three POMS patients did not meet the 40%-threshold, while all AOMS patients were correctly diagnosed as having MS. The high proportion of periventricular confluent lesions, excluded from the CVS assessment, seemed to impair CVS sensitivity in POMS diagnosis.


Assuntos
Esclerose Múltipla , Adulto , Criança , Humanos , Esclerose Múltipla/patologia , Veias , Imageamento por Ressonância Magnética , Encéfalo/patologia
2.
J Cent Nerv Syst Dis ; 14: 11795735221084842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370433

RESUMO

Background: Multiple sclerosis (MS) lesions typically form around a central vein that can be visualized with FLAIR* MRI, creating the central vein sign (CVS) which may reflect lesion pathophysiology. Herein we used gradient echo plural contrast imaging (GEPCI) MRI to simultaneously visualize CVS and measure tissue damage in MS lesions. We examined CVS in relation to tissue integrity in white matter (WM) lesions and among MS subtypes. Objective: We aimed to determine if CVS positive lesions were specific to MS subtype, if CVS can be detected consistently among readers using the GEPCI method, and if there were differences in tissue damage in lesions with vs without CVS. Subjects and Methods: Thirty relapsing-remitting MS (RRMS) subjects and 38 primary and secondary progressive MS (PMS) subjects were scanned with GEPCI protocol at 3T. GEPCI T2*-SWI images were generated to visualize CVS. Two investigators independently evaluated WM lesions for CVS and measured lesion volumes. To estimate tissue damage severity, total lesion volume, and mean lesion volume, R2t*-based tissue damage score (TDS) of individual lesions and tissue damage load (TDL) were measured for CVS+, CVS-, and confluent lesions. Spearman correlations were made between MRI and clinical data. One-way ANCOVA with age and sex as covariates was used to compare measurements of CVS+ vs CVS- lesions in each individual. Results: 398 of 548 lesions meeting inclusion criteria showed CVS. Most patients had ≥40% CVS+ lesions. CVS+ lesions were present in similar proportion among MS subtypes. Interobserver agreement was high for CVS detection. CVS+ and confluent lesions had higher average and total volumes vs CVS- lesions. CVS+ and confluent lesions had more tissue damage than CVS- lesions based on TDL and mean TDS. Conclusion: CVS occurred in RRMS and PMS in similar proportions. CVS+ lesions had greater tissue damage and larger size than CVS- lesions.

3.
Neuroimage Clin ; 9: 164-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27330979

RESUMO

Cortical gray matter (GM) damage is now widely recognized in multiple sclerosis (MS). The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2(*)) in 10 each relapsing-remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2(*) values from healthy controls (HCs) of varying ages were obtained to establish baseline data and calculate ΔR2(*) values - age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2(*) values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT) and paced auditory serial addition (PASAT) neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2(*) values were lower in multiple cortical GM and normal appearing white matter (NAWM) regions in MS compared with HC. ΔR2(*) values of global cortical GM and several specific cortical regions showed significant (p < 0.05) correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests) showed no correlation with cortical GM ΔR2(*) values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2(*) values can serve as biomarkers of tissue injury due to MS in the brain, including the cerebral cortex, an area that has been difficult to evaluate using standard MRI.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Imagem Ecoplanar/métodos , Esclerose Múltipla/diagnóstico por imagem , Adulto , Idoso , Disfunção Cognitiva/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA