Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Rep ; 14(1): 16695, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030245

RESUMO

This study conducted integrated experiments and computational modeling to investigate the speeds of a developing shock within granular salt and analyzed the effect of various impact velocities up to 245 m/s. Experiments were conducted on table salt utilizing a novel setup with a considerable bore length for the sample, enabling visualization of a moving shock wave. Experimental analysis using particle image velocimetry enabled the characterization of shock velocity and particle velocity histories. Mesoscale simulations further enabled advanced analysis of the shock wave's substructure. In simulations, the shock front's precursor was shown to have a heterogeneous nature, which is usually modeled as uniform in continuum analyses. The presence of force chains results in a spread out of the shock precursor over a greater ramp distance. With increasing impact velocity, the shock front thickness reduces, and the precursor of the shock front becomes less heterogeneous. Furthermore, mesoscale modeling suggests the formation of force chains behind the shock front, even under the conditions of weak shock. This study presents novel mesoscale simulation results on salt corroborated with data from experiments, thereby characterizing the compaction front speeds in the weak shock regime.

2.
Adv Sci (Weinh) ; : e2405285, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048327

RESUMO

The high-speed impact-resistanct materials are of great significance while their development is hindered by the intrinsic tradeoff between mechanical strength and energy dissipation capability. Herein, the new chemical system of molecular granular material (MGM) is developed for the design of impact-resistant materials from the supramolecular complexation of sub-nm molecular clusters (MCs) and hyper-branched polyelectrolytes. Their hierarchical aggregation provides the origin of the decoupling of mechanical strengths and structural relaxation dynamics. The MCs' intrinsic fast dynamics afford excellent high-speed impact-resistance, up to 5600 s-1 impact in a typical split-Hopkinson pressure bar test while only tiny boundary cracks can be observed even under 7200 s-1 impact. The high loadings of MCs and their hierarchical aggregates provide high-density sacrificial bonding for the effective dissipation of the impact energy, enabling the protection of fragile devices from the direct impact of over 200 m s-1 bullet. Moreover, the MGMs can be conveniently processed into protective coatings or films with promising recyclability due to the supramolecular interaction feature. The research not only reveals the unique relaxation dynamics and mechanical properties of MGMs in comparison with polymers and colloids, but also develops new chemical systems for the fabrication of high-speed impact-resistant materials.

3.
Polymers (Basel) ; 16(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794633

RESUMO

Due to their advantages-longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost-granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping elements (particle dampers). The performance of particle dampers is affected by numerous parameters, such as the base material, the size of the granules, the flowability, the initial prestress, etc. In this work, a series of experiments were performed on specimens with different combinations of influencing parameters. Energy-based design parameters were used to describe the overall vibration-damping performance. The results provided information for a deeper understanding of the dissipation mechanisms and their mutual correlation, as well as the influence of different parameters (base material, granule size and flowability) on the overall damping performance. A comparison of the performance of particle dampers with carbon steel and polyoxymethylene granules and conventional rubber dampers is given. The results show that the damping performance of particle dampers can be up to 4 times higher compared to conventional bulk material-based rubber dampers, even though rubber as a material has better vibration-damping properties than the two granular materials in particle dampers. However, when additional design features such as mass and stiffness are introduced, the results show that the overall performance of particle dampers with polyoxymethylene granules can be up to 3 times higher compared to particle dampers with carbon steel granules and conventional bulk material-based rubber dampers.

4.
ACS Appl Mater Interfaces ; 16(15): 19563-19570, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577839

RESUMO

The large sizes of granular particles lead to their slow diffusive dynamics and significant interparticle friction, bringing enormous difficulty to tune the mechanical properties and processability of the granular materials (GMs). Herein, 1 nm polyhedral oligomeric silsesquioxane (POSS) particles functionalized with azobenzene are designed as structural units, and the obtained GMs show unique photoswitchable viscoelasticity. The azobenzene group can undergo a reversible trans-cis conformation switch while the π-π stacking among the azobenzene fragments is only favored by the trans-conformation due to molecular geometrical requirements. The POSS units from neighboring assemblies close pack to form microdomains, and the POSS is under confinement by both the supramolecular bonding and the other POSS in the microdomains. The simultaneous breaking of the two types of confinement is difficult and, therefore, the free diffusion of POSS is hindered, leading to the elasticity of the GMs of trans-POSS. For cis-POSS, the interparticle supramolecular interaction is weak and the POSS unit can undergo free diffusion, contributing to their high flowability at room temperature. The photoswitching viscoelasticity of GMs is further used for self-healing and photoswitchable adhesion. This work paves new pathways for the regulation of material viscoelasticity and the design of GM-based smart materials.

5.
Proc Natl Acad Sci U S A ; 121(14): e2317915121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536751

RESUMO

The flowing, jamming, and avalanche behavior of granular materials is satisfyingly universal and vexingly hard to tune: A granular flow is typically intermittent and will irremediably jam if too confined. Here, we show that granular metamaterials made from particles with a negative Poisson's ratio yield more easily and flow more smoothly than ordinary granular materials. We first create a collection of auxetic grains based on a re-entrant mechanism and show that each grain exhibits a negative Poisson's ratio regardless of the direction of compression. Interestingly, we find that the elastic and yielding properties are governed by the high compressibility of granular metamaterials: At a given confinement, they exhibit lower shear modulus, lower yield stress, and more frequent, smaller avalanches than materials made from ordinary grains. We further demonstrate that granular metamaterials promote flow in more complex confined geometries, such as intruder and hopper geometries, even when the packing contains only a fraction of auxetic grains. Moreover, auxetic granular metamaterials exhibit enhanced impact absorption. Our findings blur the boundary between complex fluids and metamaterials and could help in scenarios that involve process, transport, and reconfiguration of granular materials.

6.
Proc Natl Acad Sci U S A ; 120(47): e2305134120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967222

RESUMO

Fast and slow earthquakes are two modes of energy release by the slip in tectonic fault rupture. Although fast and slow slips were observed in the laboratory stick-slip experiments, due to the sampling rate limitation, the details of the fault thickness variation were poorly understood. Especially, why a single fault would show different modes of slip remains elusive. Herein, we report on ring shear experiments with an ultrahigh sampling rate (10 MHz) that illuminate the different physical processes between fast and slow slip events. We show that the duration of slips ranged from dozens to hundreds of milliseconds. Fast slip events are characterized by continuous large-amplitude AE (acoustic emission) and somewhat intricate variation of the sample thickness: A short compaction pulse during the rapid release of stress is followed by dilation and vibrations of the sample thickness. As the slip ends, the thickness of the sample first recovers by slow compaction and then dilates again before nucleation of the following slip event. In contrast, during slow slip events, the shear stress reduction is accompanied by intermittent bursts of low-amplitude AE and sample dilation. We observed the detailed thickness variation during slips and found that dilation occurs during both fast and slow slips, which is consistent with natural observations of coseismic dilatation. This study may be used to reveal the mechanism of fault slips during fast and slow earthquakes, which explain the potential effect of fast and slow slips on stress redistribution and structural rearrangement in faults.

7.
Adv Mater ; 35(49): e2304049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721722

RESUMO

Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.


Assuntos
Microgéis , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Colágeno , Cicatrização , Hidrogéis
8.
Proc Natl Acad Sci U S A ; 120(32): e2301607120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523522

RESUMO

Critical state and continuum plasticity theories have been used in research and engineering practice in soil and rock mechanics for decades. These theories rely on postulated relationships between material stresses and strains. Some classical postulates include coaxiality between stress and strain rates, stress-dilatancy relationships, and kinematic assumptions in shear bands. Although numerical and experimental data have quantified the strains and grain kinematics in such experiments, little data quantifying grain stresses are available. Here, we report the first-known grain stress and local strain measurements in triaxial compression tests on synthetic quartz sands using synchrotron X-ray tomography and 3D X-ray diffraction. We use these data to examine the micromechanics of shear banding, with a focus on coaxiality, stress-dilatancy, and kinematics within bands. Our results indicate the following: 1) elevated deviatoric stress, strain, and stress ratios in shear bands throughout experiments; 2) coaxial principal compressive stresses and strains throughout samples; 3) significant contraction along shear bands; 4) vanishing volumetric strain but nonvanishing stress fluctuations throughout samples at all stages of deformation. Our results provide some of the first-known in situ stress and strain measurements able to aid in critically evaluating postulates employed in continuum plasticity and strain localization theories for sands.

9.
Micromachines (Basel) ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420946

RESUMO

Particle locations determine the whole structure of a granular system, which is crucial to understanding various anomalous behaviors in glasses and amorphous solids. How to accurately determine the coordinates of each particle in such materials within a short time has always been a challenge. In this paper, we use an improved graph convolutional neural network to estimate the particle locations in two-dimensional photoelastic granular materials purely from the knowledge of the distances for each particle, which can be estimated in advance via a distance estimation algorithm. The robustness and effectiveness of our model are verified by testing other granular systems with different disorder degrees, as well as systems with different configurations. In this study, we attempt to provide a new route to the structural information of granular systems irrelevant to dimensionality, compositions, or other material properties.

10.
Proc Natl Acad Sci U S A ; 120(26): e2219999120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339218

RESUMO

This research focuses on performing ultrasound propagation measurements and micro-X-ray computed tomography (µXRCT) imaging on prestressed granular packings prepared with biphasic mixtures of monodisperse glass and rubber particles at different compositions/fractions. Ultrasound experiments employing piezoelectric transducers, mounted in an oedometric cell (complementing earlier triaxial cell experiments), are used to excite and detect longitudinal ultrasound waves through randomly prepared mixtures of monodisperse stiff/soft particles. While the fraction of the soft particles is increasing linearly from zero, the effective macroscopic stiffness of the granular packings transits nonlinearly and nonmonotonically toward the soft limit, remarkably via an interesting stiffer regime for small rubber fractions between 0.1 ≲ ν ≲ 0.2. The contact network of dense packings, as accessed from µXRCT, plays a key role in understanding this phenomenon, considering the structure of the network, the chain length, the grain contacts, and the particle coordination. While the maximum stiffness is due to surprisingly shortened chains, the sudden drop in elastic stiffness of the mixture packings, at ν ≈ 0.4, is associated with chains of particles that include both glass and rubber particles (soft chains); for ν ≲ 0.3, the dominant chains include only glass particles (hard chains). At the drop, ν ≈ 0.4, the coordination number of glass and rubber networks is approximately four and three, respectively, i.e., neither of the networks are jammed, and the chains need to include particles from another species to propagate information.

11.
J Texture Stud ; 54(5): 633-645, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37264445

RESUMO

Crispiness of food products is a key parameter for consumer acceptance. Available methods to evaluate this attribute are subjective and have limitations. They are particularly difficult to implement when granular products are considered. The present study aims to provide a physical characterization of the crispiness of food granular products (gari and grinded corn flakes) based on the compression cycle modeling and the determination of the Py (yield pressure) parameter of the Heckel model. High Py values attributed to the brittle behavior, are indicative of product crispiness. Furthermore, Py parameter showed sensitivity to the plasticizing effect of water. This developed physical method was validated through sensory analysis and acoustic measurements which are both considered as reference methods for crispiness evaluation. The brittle/plastic behavior attributed to crispy/non crispy products respectively was confirmed through image analysis using X-ray microcomputed tomography. The latter made it possible to distinguish the brittle from the plastic behavior through the particle size distribution evolution. This work suggests that the Py value is a relevant indicator for the crispiness evaluation of granular products. This physical characterization is expected to contribute in food engineering as an alternative method for granular products crispiness in a simpler and a more objective way.


Assuntos
Alimentos , Zea mays , Microtomografia por Raio-X , Pressão
12.
Adv Healthc Mater ; 12(26): e2300823, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165945

RESUMO

Macrophages are essential in the initiation, maintenance, and transition of inflammatory processes such as foreign body response and wound healing. Mounting evidence suggests that physical factors also modulate macrophage activation. 2D in vitro systems demonstrate that constraining macrophages to small areas or channels modulates their phenotypes and changes their responses to known inflammatory agents such as lipopolysaccharide. However, how dimensionality and pore size affect macrophage phenotype is less explored. In this work, the change in macrophage M1/M2 polarization when confined in microporous annealed particle (MAP) scaffolds is studied. Particles sizes (40, 70, and 130 µm) are selected using outputs from software LOVAMAP that analyzes the characteristics of 3D pores in MAP gels. As the size of building block particle correlates with pore size inside the scaffolds, the three  types of scaffold allow us to study how the degree of spatial confinement modulates the behavior of embedded macrophages. Spatially confining macrophages in scaffolds with pore size on the scale of cells leads to a reduced level of the inflammatory response, which is correlated with a change in cell morphology and motility.


Assuntos
Macrófagos , Alicerces Teciduais , Cicatrização , Materiais Biocompatíveis
13.
Chem Asian J ; 18(10): e202300184, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37116101

RESUMO

Molecular granular materials (MGMs) are constructed with sub-nanoscale molecular clusters (MCs) as the building units and they have recently been observed to possess enriched functionalities distinct from granular materials of colloid nanoparticles. Herein, the birth and recent research advances in MGMs are summarized with the topics covering the precise synthesis of MC assemblies with target topologies, the hierarchical relaxation dynamics and tuneable viscoelasticity, impact-resistant capacity, and proton conductivity performance. The extremely small size of MC renders them two features: bulk diffusive dynamics with energy scale close to thermal fluctuation energy and the dominant volume fraction of surface structures. This finally leads to the hierarchical relaxation dynamics and broadly tuneable viscoelasticity of MGMs although the structural units are with small sizes and low Mw . Therefore, MGMs have been applied as impact resistant materials and proton conductors for the highly tuneable relaxation dynamics.

14.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984021

RESUMO

A series of medium-sized cyclic triaxial tests were performed to investigate the permanent deformation properties of granular materials. The strain rate was then plotted against loading cycles to classify the permanent deformation properties of granular materials under different cyclic stress ratios (CSRs). It was found that (1) the permanent strain rate dεp/dN was linearly correlated with loading cycles N using a double-log coordinate on the condition of CSR < 60%; (2) the deformation tendency factor ß, which was extracted from the linear relationship between dεp/dN and N, significantly varied with CSR and, thus, can be adopted to identify the deformation states; (3) ß > 1 implying that permanent strain accumulation ceases in limited cycles and corresponds to the plastic shakedown range, while 0 < ß ≤ 1 indicates the temporary steady state, corresponding to the plastic creep range; (4) sluggish decrease or remarkable increase in dεp/dN appeared as CSR ≥ 60%, leading to soil collapsed in limited loading cycles and resulting in an incremental collapse range. The new approach was validated by the crushed tuff aggregates and subgrade materials reported previously. It is expected that the new approach will have wider applicability than the traditional one and can provide technical guidance for the design and construction of substructures in roadway and railway engineering.

15.
Adv Sci (Weinh) ; 10(11): e2204882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36762570

RESUMO

Microporous annealed particle scaffolds (MAPS) are a new class of granular materials generated through the interlinking of tunable microgels, which produce an interconnected network of void space. These microgel building blocks can be designed with different mechanical or bio-active parameters to facilitate cell infiltration and modulate host response. Previously, changing the chirality of the microgel crosslinking peptides from L- to D-amino acids led to significant tissue regeneration and functional recovery in D-MAPS-treated cutaneous wounds. In this study, the immunomodulatory effect of D-MAPS in a subcutaneous implantation model is investigated. How macrophages are the key antigen-presenting cells to uptake and present these biomaterials to the adaptive immune system is uncovered. A robust linker-specific IgG2b/IgG1 response to D-MAPS is detected as early as 14 days post-implantation. The fine balance between pro-regenerative and pro-inflammatory macrophage phenotypes is observed in D-MAPS as an indicator for regenerative scaffolds. The work offers valuable insights into the temporal cellular response to synthetic porous scaffolds and establishes a foundation for further optimization of immunomodulatory pro-regenerative outcomes.


Assuntos
Microgéis , Alicerces Teciduais , Alicerces Teciduais/química , Macrófagos , Materiais Biocompatíveis/farmacologia , Fenótipo
16.
Macromol Rapid Commun ; 44(16): e2200864, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36809684

RESUMO

The stiffness and toughness of conventional hydrogels decrease with increasing degree of swelling. This behavior makes the stiffness-toughness compromise inherent to hydrogels even more limiting for fully swollen ones, especially for load-bearing applications. The stiffness-toughness compromise of hydrogels can be addressed by reinforcing them with hydrogel microparticles, microgels, which introduce the double network (DN) toughening effect into hydrogels. However, to what extent this toughening effect is maintained in fully swollen microgel-reinforced hydrogels (MRHs) is unknown. Herein, it is demonstrated that the initial volume fraction of microgels contained in MRHs determines their connectivity, which is closely yet nonlinearly related to the stiffness of fully swollen MRHs. Remarkably, if MRHs are reinforced with a high volume fraction of microgels, they stiffen upon swelling. By contrast, the fracture toughness linearly increases with the effective volume fraction of microgels present in the MRHs regardless of their degree of swelling. These findings provide a universal design rule for the fabrication of tough granular hydrogels that stiffen upon swelling and hence, open up new fields of use of these hydrogels.


Assuntos
Hidrogéis , Microgéis
17.
Data Brief ; 46: 108781, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478682

RESUMO

The dataset derives from a thorough laboratory characterization of all existing stabilization technologies suitable for coarse-graded aggregates. They include two traditional binders (based on cement and bitumen) and eleven nontraditional binders (based on brine salt, clay, organic non-petroleum, organic petroleum and synthetic polymer). The dataset derives from four laboratory test operations: repeated load triaxial test performed both before and after exposing the investigated samples to ten freeze-thaw cycles, weight measurement of Marshall specimens during ten freeze-thaw cycles and a modified version of rolling bottle test. Repeated load triaxial tests assess the resilient modulus and the resistance to permanent deformation of both unstabilized and stabilized specimens. The mass loss of Marshall specimens expresses the susceptibility of each additive to lose its binding property when exposed to freezing action. The modified version of the rolling bottle test characterizes the propensity to stripping for each additive coating the aggregates subjected to mechanical stirring action. Given the surging necessity to improve the construction and maintenance operations for road pavements worldwide, this dataset containing information about several stabilization technologies can be very useful for transport agencies, contractors, industry and university researchers as well as companies manufacturing and supplying stabilization technologies.

18.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295369

RESUMO

The majority of existing regression models for unbound granular materials (UGMs) consider only the effects of the number of loading cycles and stress levels on the permanent deformation characteristics and are thus unable to account for the complexity of plastic deformation accumulation behavior influenced by other factors, such as dry density, moisture content and gradation. In this study, research efforts were made to develop artificial-neural-network (ANN)-based prediction models for the permanent deformation of UGMs. A series of laboratory repeated load triaxial tests were conducted on UGM specimens with varying gradations to simulate realistic stress paths exerted by moving wheel loads and study permanent deformation characteristics. On the basis of the laboratory testing database, the ANN prediction models were established. Parametric sensitivity analyses were then performed to evaluate and rank the relative importance of each factor on permanent deformation behavior. The results indicated that the developed ANN prediction model is more accurate and reliable as compared to previously published regression models. The two major factors influencing the magnitude of accumulated plastic deformation of UGMs are the shear stress ratio (SSR) and the number of loading cycles, of which the calculated influence coefficients are 38% and 41%, respectively, while the degree of influence of gradation is twice that of the confining pressure.

19.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888310

RESUMO

Rapeseed is one of the most important sources of vegetable oil worldwide. Knowledge of the dielectric properties of rapeseed may be beneficial for moisture content determination and the optimization of microwave treatment processes. The aim of this research was to examine the complex dielectric permittivity spectra of rapeseed of moisture content from 8.3% to 16.1%. The measurements were performed in the 20 MHz-3 GHz frequency range with the use of a vector network analyzer and a coaxial transmission-line cell. The real part of dielectric permittivity significantly depended on the water content of the seeds. The obtained spectra were modeled with the use of a three-pole Debye model with bulk electrical conductivity. Because the highest-frequency pole was found near the high-frequency measurement band limit, the spectra were additionally modeled with the use of an approximate ABC model with two in-band Debye poles. The determined model parameters were found to be highly dependent on the water content of the seeds. The relations between these parameters and water content were analyzed.

20.
J Imaging ; 8(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35621899

RESUMO

X-ray computed tomography (XCT) is regularly employed in geomechanics to non-destructively measure the solid and pore fractions of soil and rock from reconstructed 3D images. With the increasing availability of high-resolution XCT imaging systems, researchers now seek to measure microfabric parameters such as the number and area of interparticle contacts, which can then be used to inform soil behaviour modelling techniques. However, recent research has evidenced that conventional image processing methods consistently overestimate the number and area of interparticle contacts, mainly due to acquisition-driven image artefacts. The present study seeks to address this issue by systematically assessing the role of XCT acquisition parameters in the accurate detection of interparticle contacts. To this end, synchrotron XCT has been applied to a hexagonal close-packed arrangement of glass pellets with and without a prescribed separation between lattice layers. Different values for the number of projections, exposure time, and rotation range have been evaluated. Conventional global grey value thresholding and novel U-Net segmentation methods have been assessed, followed by local refinements at the presumptive contacts, as per recently proposed contact detection routines. The effect of the different acquisition set-ups and segmentation techniques on contact detection performance is presented and discussed, and optimised workflows are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA