RESUMO
Graphene films grown by the chemical vapor deposition (CVD) method suffer from contamination and damage during transfer. Herein, an innovative ice-enabled transfer method under an applied electric field and in the presence of Cu2O (or Cu2O-Electric-field Ice Transfer, abbreviated as CEIT) is developed. Ice serves as a pollution-free transfer medium while water molecules under the electric field fully wet the graphene surface for a bolstered adhesion force between the ice and graphene. Cu2O is used to reduce the adhesion force between graphene and copper. The combined methodology in CEIT ensures complete separation and clean transfer of graphene, resulting in successfully transferred graphene to various substrates, including polydimethylsiloxane (PDMS), Teflon, and C4F8 without pollution. The graphene obtained via CEIT is utilized to fabricate field-effect transistors with electrical performances comparable to that of intrinsic graphene characterized by small Dirac points and high carrier mobility. The carrier mobility of the transferred graphene reaches 9090 cm2 V-1 s-1, demonstrating a superior carrier mobility over that from other dry transfer methods. In a nutshell, the proposed clean and efficient transfer method holds great potential for future applications of graphene.
RESUMO
The disparity between growth substrates and application-specific substrates can be mediated by reliable graphene transfer, the lack of which currently strongly hinders the graphene applications. Conventionally, the removal of soft polymers, that support the graphene during the transfer, would contaminate graphene surface, produce cracks, and leave unprotected graphene surface sensitive to airborne contaminations. In this work, it is found that polyacrylonitrile (PAN) can function as polymer medium for transferring wafer-size graphene, and encapsulating layer to deliver high-performance graphene devices. Therefore, PAN, that is compatible with device fabrication, does not need to be removed for subsequent applications. The crack-free transfer of 4 in. graphene onto SiO2/Si wafers, and the wafer-scale fabrication of graphene-based field-effect transistor arrays with no observed clear doping, uniformly high carrier mobility (≈11 000 cm2 V-1 s-1), and long-term stability at room temperature, are achieved. This work presents new concept for designing the transfer process of 2D materials, in which multifunctional polymer can be retained, and offers a reliable method for fabricating wafer-scale devices of 2D materials with outstanding performance.
RESUMO
Graphene has garnered widespread attention, and its use is being explored for various electronic devices due to its exceptional material properties. However, the use of polymers (PMMA, photoresists, etc.) during graphene transfer and patterning processes inevitably leaves residues on graphene surface, which can decrease the performance and yield of graphene-based devices. This paper proposes a new transfer and patterning process that utilizes an Al intermediate layer to separate graphene from polymers. Through DFT calculations, the binding energy of graphene-Al was found to be only -0.48 eV, much lower than that of PMMA and photoresist with graphene, making it easier to remove Al from graphene. Subsequently, this was confirmed through XPS analysis. A morphological characterization demonstrated that the graphene patterns prepared using the Al intermediate layer process exhibited higher surface quality, with significantly reduced roughness. It is noteworthy that the devices obtained with the proposed method exhibited a notable enhancement in both consistency and sensitivity during electrical testing (increase of 67.14% in temperature sensitivity). The low-cost and pollution-free graphene-processing method proposed in this study will facilitate the further commercialization of graphene-based devices.
RESUMO
The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.
RESUMO
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet transfer technique, which uses FeCl3 as a Cu etchant, leaves microscale impurities from the substrate, and the etchant adheres to graphene, thereby degrading its electrical performance. To address this limitation, this study introduces a modified transfer process that utilizes a temporary UV-treated SiO2 substrate to adsorb impurities from graphene before transferring it onto the final substrate. Optical microscopy and Raman mapping confirmed the adhesion of impurities to the temporary substrate, leading to a clean graphene/substrate interface. The retransferred graphene shows a reduction in electron-hole asymmetry and sheet resistance compared to conventionally transferred graphene, as confirmed by the transmission line model (TLM) and Hall effect measurements (HEMs). These results indicate that only the substrate effects remain in action in the retransferred graphene, and most of the effects of the impurities are eliminated. Overall, the modified transfer process is a promising method for obtaining high-quality graphene suitable for industrial-scale utilization in electronic devices.
RESUMO
Recently, scalable production of large-area graphene films on metal foils with promising qualities is successfully achieved by eliminating grain boundaries, wrinkles, and adlayers. The transfer of graphene from growth metal substrates onto functional substrates remains one inescapable obstacle on the road to the real commercial applications of chemical vaport deposition (CVD) graphene films. Current transfer methods still require time-consuming chemical reactions, which hinders its mass production, and produces cracks and contamination that strongly impede performance reproducibility. Therefore, graphene transfer techniques with fine intactness and cleanness of transferred graphene, and improved production efficiency would be ideal for the mass production of graphene films on destination substrates. Herein, through the engineering of interfacial forces enabled by sophisticated design of transfer medium, the crack-free and clean transfer of 4-inch-sized graphene wafers onto silicon wafers within only 15 min is realized. The reported transfer method is an important leap over the long-lasting obstacle of the batch-scale graphene transfer without degrading the quality of graphene, bringing the graphene products close to the real applications.
RESUMO
Graphene transfer onto ceramics, like Si/SiO2, is well-developed and described in the literature. However, it is problematic for other ceramic materials (e.g., Al2O3 and ZrO2), especially porous ones. In this case, it is mainly due to poor adhesion to the substrate, resulting in strong degradation of the graphene. For these reasons, the research topic of this study was undertaken. This article presents research on the development of the methodology of graphene transfer onto ceramic Al2O3 surfaces. Polycrystalline graphene chemical vapour deposition (CVD) monolayer and quasimonocrystalline high-strength metallurgical graphene (HSMG®) synthesised on liquid copper were used. When developing the transfer methodology, the focus was on solving the problem of graphene adhesion to the surface of this type of ceramic, and thus reducing the degree of graphene deterioration at the stage of producing a ceramic-graphene composite, which stands in the way of its practical use. Plasma and chemical ceramic surface modification were applied to change its hydrophobicity, and thus to improve the adhesion between the graphene and ceramic. The modification included the use of dielectric barrier discharge (DBD) plasma, oxygen plasma (RF PACVD method - Radio Frequency Plasma Assisted Chemical Vapour Deposition), and hydrofluoric acid treatment. Changes in surface properties caused by the modifications were determined by measuring the contact angle and (in the case of chemical modification) measuring the degree of surface development. The effectiveness of the applied surface preparation methodology was evaluated based on the damage degree of CVD and HSMG® graphene layer transferred onto modified Al2O3 using optical microscopy and Raman spectroscopy. The best average ID/IG ratio for the transferred HSMG® graphene was obtained after oxygen plasma modification (0.63 ± 0.18) and for CVD, graphene DBD plasma was the most appropriate method (0.17 ± 0.09). The total area of graphene defects after transfer to Al2O3 was the smallest for HSMG® graphene after modification with O2 plasma (0.251 mm2/cm2), and for CVD graphene after surface modification with DBD plasma (0.083 mm2/cm2).
RESUMO
Graphene is a promising candidate used to reduce friction and wear in micro- and nano-device applications owing to its superior mechanical robustness and intrinsic lubrication properties. Herein, we report the frictional and wear resistance properties of a graphene-coated polymer and how they are affected by fabrication processes. The results show that graphene deposited on a polymer substrate effectively improves both frictional and wear resistance properties, and the degree of improvement significantly depends on the graphene transfer method and interfacial adhesion between graphene and the substrate. Dry-transferred graphene showed better improvement than wet-transferred graphene, and the strong adhesion of graphene achieved by imidazole treatment aided the improvement. A combined analysis of surface morphology and scratch trace shows that the graphene transfer method and graphene adhesion dominate the structural integrity of the transferred graphene, and the graphene/substrate interfacial adhesion plays a decisive role in the improvement of both properties by suppressing the delamination of graphene from the substrate during the nanoscratch test, thereby preventing crack formation in graphene and weakening the puckering effect.
RESUMO
The synthesis of large-area graphene by the chemical vapor deposition (CVD) method is a mature technology; however, a transfer procedure is required to integrate CVD-grown graphene into a functional device. The reported methods for transferring graphene films cause different degrees of defects (cracking, rupture) and ion/polymer residues, which deteriorate or alter the electrical properties of as-grown graphene. Developing a reliable and fast transfer method that can maintain high-quality graphene remains a challenge. In this work, we employed UV light release tape (UV-RT) as the support layer to replace the frequently used thermal release tape (TRT) in a typical roll-to-roll dry transfer process. In this process, we used an easier-to-remove polymer as an adhesion layer to greatly reduce the strain and defects that occur during the transfer process. The cleanliness of graphene transferred by this method is above 99%, and the carrier mobility is 1.6 and 1.1 times higher than that obtained with conventional wet transfer and TRT transfer methods, respectively. UV illumination leads to facile and uniform release of the graphene film onto the target substrate, achieving one-step and selective patterning of graphene (feature size of <100 µm). The UV-assisted decomposition of the polymer molecular structure into small molecules enables a residue-free and ultraclean graphene surface. This proposed transfer method enables facile patterning of graphene and 2D films while maintaining high quality, which paves the way for versatile functional graphene applications.
RESUMO
Mass production and commercial adoption of graphene-based devices are held back by a few crucial technical challenges related to quality control. In the case of graphene produced by chemical vapor deposition, the transfer process represents a delicate step that can compromise device performance and reliability, thus hindering industrial production. In this context, the impact of poly(methyl methacrylate) (PMMA), the most common support material for transferring graphene from the Cu substrate to any target surface, can be decisive in obtaining reproducible sample batches. Although effective in mechanically supporting graphene during the transfer, PMMA solutions needs to be efficiently designed, deposited, and post-treated to serve their purpose while minimizing potential contaminations. Here, we prepared and tested PMMA solutions with different average molecular weight (AMW) and weight concentration in anisole, to be deposited by spin coating. Optical microscopy and Raman spectroscopy showed that the amount of PMMA residues on transferred graphene is proportional to the AMW and concentration in the solvent. At the same time, the mechanical strength of the PMMA layer is proportional to the AMW. These tests served to design an optimized PMMA solution made of a mixture of 550,000 (550k) and 15,000 (15k) AMW PMMA in anisole at 3% concentration. In this design, PMMA-550k provided suitable mechanical strength against breakage during the transfer cycles, while PMMA-15k promoted depolymerization, which allowed for a complete removal of PMMA residues without the need for any post-treatment. An XPS analysis confirmed the cleanness of the optimized process. We validated the impact of the optimized PMMA solution on the mass fabrication of arrays of electrolyte-gated graphene field-effect transistors operating as biosensors. On average, the transistor channel resistance decreased from 1860 to 690 Ω when using the optimized PMMA. Even more importantly, the vast majority of these resistance values are distributed within a narrow range (only ca. 300 Ω wide), in evident contrast with the scattered values obtained in non-optimized devices (about 30% of which showed values above 1 MΩ). These results prove that the optimized PMMA solution unlock the production of reproducible electronic devices at the batch scale, which is the key to industrial production.
RESUMO
The crystal structure of two-dimensional (2D) organic-inorganic halide perovskites undergoes fast structural collapse under the electron beam irradiation, hindering high-resolution transmission electron microscopy imaging. Graphene protection is an effective solution to mitigate the damage of electron-beam irradiation and has been applied in 2D materials such as MoS2 . However, the effectivity of graphene protection has not been demonstrated in 2D halide perovskites yet, as traditional wet-transfer of graphene with aqueous solution would cause serious degradation for moisture-sensitive halide perovskites. Here, we verified that graphene protection plays a protection role and developed a method using nonpolar solvent to transfer the graphene layer atop the perovskite nanosheets. With this method, the perovskite nanosheets might be well protected by graphene encapsulation. HIGHLIGHTS: Transfer method of graphene on moisture-sensitive 2D halide perovskites using nonpolar solvents was developed. Graphene substrate is proven to be able to mitigate electron-beam damage to 2D halide perovskites. Encapsulation structure of graphene/halide perovskite/graphene was demonstrated.
RESUMO
Highly flexible, electrically conductive freestanding graphene membranes hold great promise for vibration-based applications. This study focuses on their integration into mainstream semiconductor manufacturing methods. We designed a two-mask lithography process that creates an array of freestanding graphene-based variable capacitors on 100 mm silicon wafers. The first mask forms long trenches terminated by square wells featuring cone-shaped tips at their centers. The second mask fabricates metal traces from each tip to its contact pad along the trench and a second contact pad opposite the square well. A graphene membrane is then suspended over the square well to form a variable capacitor. The same capacitor structures were also built on 5 mm by 5 mm bare dies containing an integrated circuit underneath. We used atomic force microscopy, optical microscopy, and capacitance measurements in time to characterize the samples.
RESUMO
High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.
RESUMO
We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants. In addition, this method can also simplify the device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.
RESUMO
We report the realization of an acoustic capacitive microphone formed by graphene/poly(methyl methacrylate) (PMMA). It is the first time that the ultra-large graphene/PMMA membrane suspended fully over the cavity has been fabricated by releasing the silicon dioxide sacrificial layer underneath the membrane. The novelty in the fabrication method is that the silicon dioxide layer has been etched by hydrogen fluoride vapor from the back of the partly etched silicon substrate. Using the new process, the ultra-large graphene/PMMA membrane, with a diameter to thickness ratio of 7800, has been suspended over the cavity with a 2 µm air gap. The spacing of 2 µm is the minimum gap over the graphene-based acoustic capacitive microphones which have been reported so far. The static deformation of the suspended graphene/PMMA membrane after silicon dioxide has been etched is estimated to be 270 nm. The aspect ratio of the membrane's diameter over its static deformation is around 13,000, which shows that the graphene/PMMA membrane with a diameter of a few millimeters can be transferred and suspended over the substrate with relatively small deformation by releasing the sacrificial silicon dioxide layer. The dynamic behavior of the device under electrostatic actuation has been characterized. The acoustic response of the graphene/PMMA capacitive microphone has been measured, and the sensitivity has been observed to be -47.5 dB V (4.22 mV/Pa) ± 10%. The strain in the graphene/PMMA membrane is estimated to be 0.034%.
RESUMO
Conventional or non-conventional chemical threat is gaining huge attention due to its unpredictable and mass destructive effects. Typical military protective suits have drawbacks such as high weight, bulky structure, and unpredictable lifetime. A durable, light, and scalable graphene e-fabric was fabricated from CVD-grown graphene by a simple co-lamination method. The sheet resistance was below 1 kΩ/sq over the wide surface area even after 1000 bending cycles. A graphene triboelectric nanogenerator showed the peak VOC of 68 V and the peak ICC of 14.4 µA and 1 µF capacitor was charged successfully in less than 1 s. A wearable chemical sensor was also fabricated and showed a sensitivity up to 53% for nerve chemical warfare agents (GD). DFT calculations were conducted to unveil the fundamental mechanisms underlying the graphene e-fabric sensor. Additionally, protection against chemical warfare agents was tested, and a design concept of graphene-based intelligent protective clothing has been proposed.
RESUMO
Owing to the fascinating properties of graphene, fulfilling the promising characteristics of graphene in applications has ignited enormous scientific and industrial interest. Chemical vapor deposition (CVD) growth of graphene on metal substrates provides tantalizing opportunities for the large-area synthesis of graphene in a controllable manner. However, the tedious transfer of graphene from metal substrates onto desired substrates remains inevitable, and cracks of graphene membrane, transfer-induced doping, wrinkles as well as surface contamination can be incurred during the transfer, which highly degrade the performance of graphene. Furthermore, new issues can arise when moving to large-scale transfer at an industrial scale, thus cost-efficient and environment-friendly transfer techniques also become imperative. The aim of this review is to provide a comprehensive understanding of transfer-related issues and the corresponding experimental solutions and to provide an outlook for future transfer techniques of CVD graphene films on an industrial scale.
Assuntos
Grafite , Gases , Propriedades de SuperfícieRESUMO
In the present work, we developed a novel method for transferring monolayer graphene onto four different commercial hydrophilic micro/ultra-filtration substrates. The developed method used electrostatic charging to maintain the contact between the graphene and the target substrate intact during the etching step through the wet transfer process. Several measurement/analysis techniques were used in order to evaluate the properties of the surfaces and to assess the quality of the transferred graphene. The techniques included water contact angle (CA), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Potassium chloride (KCl) ions were used for the transport study through the developed graphene-based membranes. The results revealed that 70% rejection of KCI ions was recorded for the graphene/polyvinylidene difluoride (PVDF1) membrane, followed by 67% rejection for the graphene/polyethersulfone (PES) membrane, and 65% rejection for graphene/PVDF3 membrane. It was revealed that the smoothest substrate was the most effective in rejecting the ions. Although defects such as tears and cracks within the graphene layer were still evolving in this new transfer method, however, the use of Nylon 6,6 interfacial polymerization allowed sealing the tears and cracks within the graphene monolayer. This enhanced the KCl ions rejection of up to 85% through the defect-sealed graphene/polymer composite membranes.
RESUMO
Chemical vapor deposition of graphene on transition metals is the most favored method to get large scale homogenous graphene films to date. However, this method involves a very critical step of transferring as grown graphene to desired substrates. A sacrificial polymer film is used to provide mechanical and structural support to graphene, as it is detached from underlying metal substrate, but, the residue and cracks of the polymer film after the transfer process affects the properties of the graphene. Herein, a simple mixture of polystyrene and low weight plasticizing molecules is reported as a suitable candidate to be used as polymer support layer for transfer of graphene synthesized by chemical vapor deposition (CVD). This combination primarily improves the flexibility of the polystyrene to prevent cracking during the transfer process. In addition, the polymer removal solvent can easily penetrate between the softener molecules, so that the polymer film can be easily dissolved after transfer of graphene, thereby leaving no residue. This facile method can be used freely for the large-scale transfer of 2D materials.
RESUMO
Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.